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The aim of this work is to explore the possible types of phenomena that simple macroeconomic
Agent-Based models (ABM) can reproduce. We propose a methodology, inspired by statistical
physics, that characterizes a model through its “phase diagram” in the space of parameters. Our
first motivation is to understand the large macro-economic fluctuations observed in the “Mark I”
ABM devised by D. Delli Gatti and collaborators. In this regard, our major finding is the generic
existence of a phase transition between a “good economy” where unemployment is low, and a “bad
economy” where unemployment is high. We then introduce a simpler framework that allows us to
show that this transition is robust against many modifications of the model, and is generically induced
by an asymmetry between the rate of hiring and the rate of firing of the firms. The unemployment
level remains small until a tipping point, beyond which the economy suddenly collapses. If the
parameters are such that the system is close to this transition, any small fluctuation is amplified as
the system jumps between the two equilibria. We have explored several natural extensions of the
model. One is to introduce a bankruptcy threshold, limiting the firms maximum level of debt-to-
sales ratio. This leads to a rich phase diagram with, in particular, a region where acute endogenous
crises occur, during which the unemployment rate shoots up before the economy can recover. We
also introduce simple wage policies. This leads to inflation (in the “good” phase) or deflation (in the
“bad” phase), but leaves the overall phase diagram of the model essentially unchanged. We have
also explored the effect of simple monetary policies that attempt to contain rising unemployment
and defang crises. We end the paper with general comments on the usefulness of ABMs to model
macroeconomic phenomena, in particular in view of the time needed to reach a steady state that
raises the issue of ergodicity in these models.

It is human nature to think wisely and to act absurdly – Anatole France
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I. INTRODUCTION

A. From micro-rules to macro-behaviour

Inferring the behaviour of large assemblies from the behaviour of its elementary constituents is arguably one of
the most important problems in a host of different disciplines: physics, material sciences, biology, computer sciences,
sociology and, of course, economics and finance. It is also a notoriously hard problem. Statistical physics has
developed in the last 150 years essentially to understand this micro-macro link. Clearly, when interactions are absent
or small enough, the system as a whole merely reflects the properties of individual entities. This is the canvas of
traditional macro-economic approaches. Economic agents are assumed to be identical, non-interacting, rational agents,
an idealization known as the “Representative Agent” (RA). In this framework, micro and macro trivially coincide.
However, we know (in particular from physics) that discreteness, heterogeneities and/or interactions can lead to
totally unexpected phenomena. Think for example of super-conductivity or super-fluidity1: before their experimental
discovery, it was simply beyond human imagination that individual electrons or atoms could “conspire” to create a
collective state that can flow without friction. Micro and macro behaviour not only do not coincide in general, but
genuinely surprising behaviour can emerge through aggregation. From the point of view of economic theory, this is
interesting, because financial and economic history is strewn with bubbles, crashes, crises and upheavals of all sorts.
These are very hard to fathom within a Representative Agent framework [2], within which crises would require large
aggregate shocks, when in fact small local shocks can trigger large systemic effects when heterogeneities, interactions
and network effects are taken into account [3–6]. The need to include these effects has spurred a large activity in
“Agent-Based models” (ABMs) [7–9]. These models need numerical simulations, but are extremely versatile because
any possible behavioural rules, interactions, heterogeneities can be taken into account.

In fact, these models are so versatile that they suffer from the “wilderness of high dimensional spaces” (paraphrasing
Sims [10]). The number of parameters and explicit or implicit choices of behavioural rules is so large (∼ 10 or more,
even in the simplest models, see below) that the results of the model may appear unreliable and arbitrary, and the
calibration of the parameters is an hopeless (or highly unstable) task. Mainstream RA “Dynamic Stochastic General
Equilibrium” models (DSGE), on the other hand, are simple enough to lead to closed form analytical results, with
simple narratives and well-trodden calibration avenues [11]. In spite of their unrealistic character, these models
appear to perform satisfactorily in ‘normal’ times, when fluctuations are small. However, they become deeply flawed
in times of economic instability [12], suggesting different assumptions are needed to understand what is observed in
reality. But even after the 2008 crisis, these traditional models are still favoured by most economists, both in academia
and in institutional and professional circles. ABMs are seen at best as a promising research direction and at worst as
an unwarranted “black box” (see [13] for an enlightening discussion on the debate between traditional DSGE models
and ABMs, and [14–17] for further insights).

B. A methodological manifesto

At this stage, it seems to us that some clarifications are indeed needed, concerning both the objectives and method-
ology of Agent-Based models. ABMs do indeed suffer from the wilderness of high dimensional spaces, and some
guidance is necessary to put these models on a firm footing. In this respect, statistical physics offers a key concept:
the phase diagram in parameter space [18]. A classic example, shown in Fig. 1, is the phase diagram of usual sub-
stances as a function of two parameters, here temperature and pressure. The generic picture is that the number
of distinct phases is usually small (e.g. three in the example of Fig. 1: solid, liquid, gas). Well within each phase,
the properties are qualitatively similar and small changes of parameters have a small effect. Macroscopic (aggregate)
properties do not fluctuate any more for very large systems and are robust against changes of microscopic details. This
is the “nice” scenario, where the dynamics of the system can be described in terms of a small number of macroscopic
(aggregate) variables, with some effective parameters that encode the microscopic details. But other scenarios are of
course possible; for example, if one sits close to the boundary between two phases, fluctuations can remain large even
for large systems and small changes of parameters can radically change the macroscopic behaviour of the system.
There may be mechanisms naturally driving the system close to criticality (like in Self Organized Criticality [19]), or,
alternatively, situations in which whole phases are critical, like for “spin-glasses” [20].

In any case, the very first step in exploring the properties of an Agent-Based model should be, we believe, to
identify the different possible phases in parameter space and the location of the phase boundaries. In order to do

1 See e.g. Ref. [1] for an history of the discovery of super-fluidity and a list of references.
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this, numerical simulations turn out to be very helpful [21, 22]: aggregate behaviour usually quickly sets in, even for
small sizes. Some parameters usually turn out to be crucial, while others are found to play little role. This is useful
to establish a qualitative phenomenology of the model – what kind of behaviour can the model reproduce, which basic
mechanisms are important, which effects are potentially missing? This first, qualitative step allows one to unveil
the “skeleton” of the ABM. Simplified models that retain most of the phenomenology can then be constructed and
perhaps solved analytically, enhancing the understanding of the important mechanisms, and providing some narrative
to make sense of the observed effects. In our opinion, calibration of an ABM using real data can only start to make
sense after this initial qualitative investigation is in full command – which is in itself not trivial when the number
of parameters is large. The phase diagram of the model allows one to restrict the region of parameters that lead to
“reasonable” outcomes (see for example the discussion in [23, 24]).

C. Outline, results and limitations of the paper

The aim of this paper is to put these ideas into practice in the context of a well-studied macroeconomic Agent-Based
model (called “Mark I” below), devised by Delli Gatti and collaborators [25, 26]. This model is at the core of the
European project “CRISIS”, which partly justifies our attempt to shed some theoretical light on this framework.2 In
the first part of the paper, we briefly recall the main ingredients of the model and show that as one increases the
baseline interest rate, there is a phase transition between a “good” state of the economy, where unemployment is
low and a “bad” state of the economy where production and demand collapse. In the second part of the paper, we
study the phase diagram of a highly simplified version of Mark I, dubbed ‘Mark 0’ that aims at capturing the main
drivers of this phase transition. The model is a “hybrid” macro/ABM model where firms are treated individually
but households are only described in aggregate. Mark 0 does not include any exogeneous shock; crises can only be of
endogeneous origin. We show that the most important parameter in this regard is the asymmetry between the firms’
propensity to hire (when business is good) or to fire (when business is bad). In Mark I, this asymmetry is induced by
the reaction of firms to the level of interest rates, but other plausible mechanisms would lead to the same effect. The
simplest version of the model is amenable to an analytic treatment and exhibits a “tipping point” (i.e. a discontinuous
transition) between high employment and high unemployment. When a bankruptcy condition is introduced (in the
form of a maximum level of debt-to-sales ratio), the model reveals an extremely rich phenomenology: the “good”
phase of the economy is further split into three distinct phases: one of full employment, a second one with a substantial
level of residual unemployment, and a third, highly interesting region, where endogeneous crises appear. We find that
both the amount of credit available to firms (which in our model sets the bankrupcty threshold), and the way default
costs are absorbed by the system, are the most important aspects in shaping the qualitative behavior of the economy.
Finally, we allow wages to adapt (whereas they are kept fixed in Mark I) and allow inflation or deflation to set in.
Still, the overall shape of the phase diagram is not modified. We investigate further enhancements of the models, in
particular simple policy experiments. Open questions and future directions, in particular concerning macroeconomic
ABMs in general, are discussed in our final section.

Before embarking to the core of our results, we want to clearly state what our ambition and objectives are, and
what they are not. We do claim that the methodology proposed here is interesting and general, and could help
improving the relevance of macroeconomic ABMs. We do believe that large aggregate volatility and crises (in particular
those appearing in Mark I) can be understood through the lens of instabilities and phase transitions, as exemplified
by our highly stylized Mark 0 model. We are also convinced that simple “skeleton” ABMs (for which most of
the phenomenology can be fully dissected) must be developed and compared with traditional DSGE models before
embarking into full-fledged models of the economy. On the other hand, we do not claim that our basic Mark 0
framework is necessarily the best starting point. Mark 0 was primarily set up as a simplification of Mark I. Still,
we find that Mark 0 leads to a surprisingly rich and to some extent realistic set of possible behaviours, including
business cycles and crises, inflation, policy experiments, etc. However, we do not wish to claim that Mark 0 is able to
reproduce all the known empirical stylized facts and could well be in contradiction with some of them3. In view of
the simplicity of the model, this has to be expected. But we believe that Mark 0 can serve as a useful building block
in the quest of a more comprehensive ABM, as more and more effects are progressively incorporated, in a controlled

2 see www.crisis-economics.eu
3 The idea of building mathematical models of reality that reproduce some phenomena, but might even be in contradiction with others, is

at the heart of the development of physics. Most probably, its use was introduced in the Hellenistic period [27]. A striking example [27]
is Archimedes’ On Floating Bodies. In the first of the two books, in fact, Archimedes provides a mathematical proof of the sphericity
of Earth (assumed to be liquid and at rest). However, in the second book, he assumes the surface of Earth to be flat for the purpose of
describing other phenomena, for which the sphericity of Earth is irrelevant.
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FIG. 1: A typical “phase diagram”, here the solid-liquid-gas phases in the temperature-pressure plane. Far from phase
transitions, within a given phase, the behaviour of the system is qualitatively similar for all values of the parameters. Close to
phase boundaries, on the other hand, small changes of parameters can lead to dramatic macroscopic changes.

manner, to the model. Even if Mark 0 turns out to be little more than a methodological exercice, we hope that the
ABM community (and perhaps beyond) will find it inspiring.

To conclude this (long) introduction, let us insist that all the claims made in this paper only refer to the studied
models, but do not necessarily apply to economic reality. If fact, our central point is that a model has to be understood
inside-out before even trying to match any empirical fact.

II. A PHASE TRANSITION IN “MARK I”

A. Description of the model in a nutshell

The Mark I family of agent-based models was proposed by Delli Gatti and collaborators as a family of simple
stylized macroeconomic models [25, 26]. Note that several other macroeconomic Agent-Based models have been put
forth in the recent years, see [28–33]. Mark I is particularly interesting because large fluctuations in unemployment
and output seem to persist in the stationary state (a feature in fact shared by many ABMs cited above).

The Mark I economy [25] is made up of a set of firms, households, firms owners and a bank. Firms produce a
certain quantity of a single (and not storable) good, proportional to the number of their employees, that is sold at a
time-dependent and firm-dependent prices. Firms pay identical time-independent wages. When the cash owned by a
firm is not enough to pay the wages, it asks banks for a loan. The bank provides loans to the firms at an interest rate
that depends on the financial fragility of the firm. Households provide workforce in exchange of a salary and want
to spend a fixed fraction of their savings (or wealth). The owners of the firms do not work but receive dividends if
the firms make profits. Firms are adaptive, in the sense that they continuously update their production (i.e. they
hire/fire workers) and their prices, in an attempt to match their production with the demand of goods issued by the
households. They also choose how much extra loan they want to take on, as a function of the offered interest rate.
This last feature, combined with the price and production update rules, will turn out to be crucial in the dynamics
of the model.

The above description defines the basic structure of the Mark I family, but it is of course totally insufficient to code
the model, since many additional choices have to be made, leading to several different possible implementations of
the model. Here we will use as a baseline model one of the simplest implementation of Mark I, whose description can
be found in [34]; the total number of parameters in this version is 10 (but some parameters are actually implicitly
fixed from the beginning). We have recoded this basic version and also a slightly different version that we call “Mark
I+”, which differs on minor details (some that we will specify below) but also on one major aspect: our version of the
model strictly conserves the amount of money in circulation, i.e. the money in the bank + total firm assets + total
households wealth (here savings), in order to avoid – at this stage – any effect due to uncontrolled money creation.
A detailed pseudo-code of Mark I+ is provided in Appendix A.
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B. State variables

In short (see Appendix A for a complete description), the dynamic evolution of the model is defined by the following
state variables. The state of each firm i = 1 · · ·NF is specified by its price pi(t), the salary it offers Wi(t), its production
Yi(t), its target production Y Ti (t), its demand Di(t), its liquidity Li(t), its total debt DTi (t). Moreover, each firm
is owned by a household and has a list of employees that is dynamically updated. The state of each household
a = 1 · · ·NH is specified by its wealth (in the form of savings) Sa(t) and by the firm for which it works (if any).

C. Update rules for prices and production

Among all the micro-rules that any Agent-Based model has to postulate, some seem to be more crucial than others.
An important item in Mark I is the behavioural rule for firms adaptation to their economic environment. Instead
of the standard, infinite horizon, profit optimizing firm framework (that is both unrealistic and intractable), Mark I
postulates a heuristic rule for production Yi(t) and price pi(t) update, which reads as follows:

Yi(t) = Di(t) & pi(t) > p̄(t)⇒ Y Ti (t+ 1) = Yi(t)[1 + γyξi(t)]

Yi(t) = Di(t) & pi(t) < p̄(t)⇒ pi(t+ 1) = pi(t)[1 + γpξi(t)]

Yi(t) > Di(t) & pi(t) < p̄(t)⇒ Y Ti (t+ 1) = Yi(t)[1− γyξi(t)]
Yi(t) > Di(t) & pi(t) > p̄(t)⇒ pi(t+ 1) = pi(t)[1− γpξi(t)],

(1)

where Di(t) is the total demand for the goods produced by firm i at time t, and

p̄(t) =

∑
i pi(t)Di(t)∑
iDi(t)

(2)

is the average price of sold goods at time t, ξi(t) a U [0, 1] random variable, independent across firms and across times,
and γy, γp two parameters in [0, 1]. The quantity Y Ti (t) is the target production at time t, not necessarily the realized
one, as described below. These heuristic rules can be interpreted as a plausible tâtonnement process of the firms, that
attempt to guess their correct production level and price based on the information on the last time step. In spirit,
each unit time step might correspond to a quarter, so the order of magnitude of the γ parameters should be a few
percent. Note that in the version of Mark I that we consider, wages are fixed to a constant value Wi(t) ≡ 1, for all
times and all firms.

As we shall see later, the adaptive price/production adjustments described in Eq. (1) leads to two stable attractors
(full employment and full unemployment). Which of the two is be reached by the dynamics depends mainly on the
level of asymmetry between an upward and downward production adjustments. In Eq. (1), the production adjustment
depends on a single parameter γy and in this case the system evolves towards a full employment state in the absence of
any other constraint. However, as it will become clear in the following section, financial constraints on loans may lead
to an effective “weakening” of the upward adjustment, possibly driving the dynamics towards the full unemployment
state. As long as such asymmetries between upward and downward production adjustments exist (together with some
noise in the price dynamics), the scenario described above and in the following sections is very general and in fact do
not depend on details of the update process.

D. Debt and loans

The model further assumes linear productivity, hence the target production corresponds to a target workforce
Y Ti (t)/α, where α is a constant coefficient that can always be set to unity (gains in productivity are not considered at
this stage). The financial need of the firm is max [0, Y Ti (t)Wi(t)− Li(t)], where Li(t) is the cash available. The total
current debt of the firm is DTi (t). The financial fragility of the firm `i(t) is defined in Mark I as the ratio of debt over
cash. The offered rate by the banks for the loan is given by:

ρi(t) = ρ0G (`i(t))× (1 + ξ′i(t)), (3)

where ρ0 is the baseline (central bank) interest rate, G is an increasing function (taken to be G(`) = 1+tanh(`) in the
reference Mark I and G(`) = 1 + ln(1 + `) in Mark I+), and ξ′ another noise term drawn from a uniform distribution
U [0, 1]. Depending on the rate offered, firms decide to take the full loan they need or only a fraction F (ρ) of it, where
F ≤ 1 is a decreasing function of ρ, called “credit contraction”. For example, in the reference Mark I, F (ρ ≤ 5%) = 1
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and F (ρ > 5%) = 0.8. We have played with the choice of the two functions F,G and the phase transition reported
below is in fact robust whenever these functions are reasonable. In Mark I+, we chose a continuous function, such as
to avoid built in discontinuities:4

F (x) =


1 if x < 5%

1− x−5%
5% if 5% < x < 10%

0 if x > 10%.

(4)

The important feature here is that when F < 1, the firm does not have enough money to hire the target workforce
Y Ti (t) and is therefore obliged to hire less, or even to start firing in order to match its financial constraints. This
financial constraint therefore induces an asymmetry in the hiring/firing process: when firms are indebted, hiring will
be slowed down by the cost of further loans. As we will see later, this asymmetry is responsible for an abrupt change
in the steady state of the economy.

E. Spending budget and bankruptcy

Firms pay salaries to workers and households determine their budget as a fraction c (constant in time and across
households) of their total wealth (including the latest salary). Each household then selects M firms at random and
sorts them according to their price; it then buys all it can buy from each firm sequentially, from the lower price to
the highest price5. The budget left-over is added to the savings. Each firm sells a quantity Di(t) ≤ Yi(t), compute
its profits (that includes interests paid on debt), and updates its cash and debt accordingly. Moreover, each firm
pays back to the bank a fraction τ of its total debt DTi (t). It also pays dividends to the firm owners if profits are
positive. Firms with negative liquidity Li(t) < 0 go bankrupt. In Mark I+, the cost of the bankruptcy (i.e. −Li(t))
is spread over healthy firms and on households. Once a firm is bankrupt it is re-initialized in the next time step with
the owner’s money, to a firm with a price and production equal to their corresponding average values at that moment
in time, and zero debt (see Appendix A for more precise statements).

F. Numerical results: a phase transition

When exploring the phase space of Mark I, it soon becomes clear that the baseline interest rate ρ0 plays a major
role. In order not to mix different effects, we remove altogether the noise term ξ in Eq. (3) that affects the actual
rate offered to the firms. We find that as long as ρ0 is smaller than a certain threshold ρc, firms are on average below
the credit contraction threshold and always manage to have enough loans to pay wages. In this case the economy is
stable and after few (∼ 100) time steps reaches a stationary state where the unemployment rate is low. If on the other
hand the baseline interest rate ρ0 exceeds a critical value ρc, firms cannot afford to take as much loans as they would
need to hire (or keep) the desired amount of workers. Surprisingly, this induces a sudden, catastrophic breakdown of
the economy. Production collapses to very small values and unemployment sky-rockets. This transition between two
states of the economy takes place in both the reference Mark I and in the modified Mark I+; as we shall show in the
next section, this transition is actually generic and occurs in simplified models as well. Note in particular that ρc is
different from the value at which F (x) starts decreasing.

The data we show in Fig. 2 corresponds to Mark I+ with parameters γp = γy = 0.1 and M = 3 (see Appendix A
for the general parameter setting of the model). While the qualitative behaviour of the model is robust, the details of
the transition may change with other parameter settings. For example, smaller values of γp, γy lead to lower critical
thresholds ρc (as well as smaller values of M) and to longer equilibration times (Teq scales approximately as 1/γy,p for
ρ0 < ρc). Increasing the size of the economy only affects the magnitude of the fluctuations within one phase leaving
the essential features of the transition unchanged. Interestingly, although it is not clear from Fig. 2, the model exhibits
oscillatory patterns of the employment rate. The presence of these oscillations can be seen in the frequency domain of
the employment rate time series (not shown here), which is essentially characterized by a white noise power spectrum

4 Note however that the arbitrary thresholds (5% and 10%) in Eq. (4) are of little importance and only affect the precise location of the
phase transition.

5 In this sense, the good market is not efficient since the household demand is not necessarily satisfied when M is small. The job market
instead, though not efficient due to the presence of unvoluntarely unemployment, is characterized by perfect information since all the
workers can contact all the firms until all the open positions are filled.
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FIG. 2: Left: Average unemployment rate u as a function of the interest rate ρ0 for two system sizes (with NH = 10NF in
both cases). The average is over 100 000 time steps discarding the first 50 000 time steps. The phase transition at ρc = 2.1%
is of first order with u jumping discontinuously from small values to 1 (intermediate values obtained for ρ0 ∈ [2.1%, 3.1%] are
only due to a much longer equilibration time near the critical point). Note that in the bottom graph we show averages for
Teq = 50 000 regardless of ρ0 while an estimate of the time needed to reach the steady state as a function of ρ0 is plotted in
logarithmic scale in the top graph. In the bottom graph we also show the average value of the asymmetry measure R (see
main text) for NF = 1000. As one can see R is decreasing with the interest rate up to a point where the asymmetry is strong
enough to drive the economy into the high unemployment phase. Right: Two trajectories of the unemployment rate with
NF = 1000 at ρ0 = 1.9% and ρ0 = 2.5%.

with a well defined peak at intermediate frequencies. All these effects will become clearer within the reduced model
described in the next section.

Anticipating the results of the next section, we have characterized, as a function of ρ0, the asymmetry ratio R that
characterizes how firms react to the need to hire or to fire. More precisely, we compute the ratio between the target
number of job creations (resp. destructions) – as a reaction to excess demand (or supply) in the previous time step
– to the realized number of hires (fires) after financial constraints are met. At each time step we can then extract
the average target-to-realized ratios for firms in excess supply and demand respectively. The ratio R (averaged over
time) between these two numbers is a proxy of the asymmetry with which firms react to the need to hire or fire. It is
clear that increasing ρ0 hobbles the capacity of firms to hire when they need to, and therefore decreases the ratio R,
as seen in Fig. 2, which suggests that the employment collapse is related to this ratio. The results of the next section
will fully confirm this scenario.

To sum up, our most salient finding is that Mark I (or Mark I+) has essentially two stationary states, with a first
order (discontinuous) transition line separating the two. If the parameters are such that the system lies close to this
critical line, then any small modulation of these parameters – such as the noise term that appears in Eq. (3) – will
be amplified by the proximity of the transition, and lead to interesting boom/bust oscillations, of the kind originally
observed in Mark I [34], and perhaps of economic relevance. The question, of course, is how generic this scenario is.
We will now show, by studying much simplified versions of Mark I, that this transition is generic, and can indeed be
induced by the asymmetry between hiring and firing. We will then progressively enrich our watered-down model (call
“Mark 0” below) and see how the qualitative picture that we propose is affected by additional features.

III. HYBRID ABM’S: THE MINIMAL “MARK 0” MODEL

Moving away from the RA framework, Agent-Based Modeling bites the bullet and attempts to represent in details
all the individual components of the economy (as, for example, in [28, 29]). This might however be counter-productive,
at least in the research stage we are still in: keeping too many details is not only computer-time consuming, it may
also hobble the understanding of the effects that ABMs attempt to capture. It may well be that some sectors of
the economy can be adequately represented in terms of aggregate variables, while discreteness, heterogeneities and
interactions are crucial in other sectors. In our attempt to simplify Mark I, we posit that the whole household sector
can be represented by aggregate variables: total wealth (again entirely in the form of savings) S(t), total income wage
W (t) and total consumption budget CB(t) (which, as we will emphasize below, is in general larger than the actual
consumption C(t)). We also remove the banking sector and treat the loans in the simplest possible way – see below.
While the interest rate is zero in the simplest version, the incentive to hire/fire provided by the interest rate, that
was at play in Mark I, will be encoded in a phenomenological way in the update rule for production. The firms,
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on the other hand, are kept as individual entities (but the above simplifications will allow us to simulate very large
economies, with NF = 100 000 firms or more).

A. Set-up of the model

The minimal version of the Mark 0 model is defined as follows. The salient features are:

• There are NF firms in total and µNF households, µ > 1.6 Each firm i = 1 · · ·NF pays a salary Wi(t) and
produces output Yi(t) by means of a one-to-one technology that uses only labor as an input. Productivity is
chosen to be constant in time and fixed to α = 1. We therefore neglect any productivity shocks in our model;
interestingly, crises (when they occur) will be of endogeneous origin. With α = 1, Yi(t) is simply equal to the
number of employees of firm i. Hence, the employment rate ε(t) and unemployment rate u(t) are:

ε(t) =
1

µNF

∑
i

Yi(t) ,

u(t) = 1− ε(t) .
(5)

• Households are described by their total accumulated savings S(t) (which at this stage are always non-negative)
and by their total wage income

∑
iWi(t)Yi(t). At each time step, they set a total consumption budget7

CB(t) = c [S(t) +
∑
i

Wi(t)Yi(t)] (6)

which is distributed among firms using an intensity of choice model [36]. The demand of goods for firm i is
therefore:

Di(t) =
CB(t)

pi(t)

e−βpi(t)/p(t)

Z(t)
, Z(t) =

∑
i

e−βpi(t)/p(t) (7)

where β is the price sensitivity parameter determining an exponential dependence of households demand in the
price offered by the firm; β = 0 corresponds to complete price insensitivity and β →∞ means that households
select only the firm with the lowest price.8 The normalization is such that CB(t) =

∑
i pi(t)Di(t), as it should

be.

• Firms are described by their price pi(t), their salary Wi(t), and their production Yi(t).

– For simplicity, we fix the salary Wi(t) ≡ 1 – an extension that includes wage dynamics is discussed below.

– For the price, we keep the Mark I price update rule (1), with the average production-weighted price:

p(t) =

∑
i pi(t)Yi(t)∑
i Yi(t)

. (8)

Note that this price update rule only makes sense if firms anticipate that households are price sensitive,
i.e. if β > 0, which we will assume in the following. Still, the dynamics of the model as defined remains
perfectly well-behaved when β = 0, even if in this limit, the rational behaviour of firms would be to increase
their price indefinitely and produce very little.

6 Actually, households are treated as a unique aggregate variable, therefore µ is not a relevant parameter: one can see that its value is
irrelevant and one can always set µ = 1 for simplicity. Yet it is useful to think that the aggregate variables represents in an effective
way a certain number of individual households, hence we keep the parameter µ explicit in the following.

7 Of course, one could choose different c’s for the fraction of savings and the fraction of wages devoted to spending, or any other non-linear
spending schedule.

8 In this sense, as long as β > 0 firms compete on prices. An averaged scatter plot of firms profits versus the price offered (not shown
here) indeed displays a well-shaped concave profit function.
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– For production, we assume that firms are more careful with the way they deal with their workforce than
posited in Mark I. Independently of their price level, firms try to adjust their production to the observed
demand. When firms want to hire, they open positions on the job market; we assume that the total number
of unemployed workers, which is µNFu(t), is distributed among firms according to an intensity of choice
of model which depends on both the wage offered by the firm9 and on the same parameter β as it is for
Eq. (7); therefore the maximum number of available workers to each firm is:

µũi(t) =
eβWi(t)/w(t)∑
i e
βWi(t)/w(t)

µNFu(t) . (9)

where

w(t) =

∑
iWi(t)Yi(t)∑

i Yi(t)
. (10)

In summary, we have

If Yi(t) < Di(t) ⇒


Yi(t+ 1) = Yi(t) + min{η+(Di(t)− Yi(t)), µũi(t)}
If pi(t) < p(t) ⇒ pi(t+ 1) = pi(t)(1 + γpξi(t))

If pi(t) ≥ p(t) ⇒ pi(t+ 1) = pi(t)

If Yi(t) > Di(t) ⇒


Yi(t+ 1) = max{Yi(t)− η−[Yi(t)−Di(t)], 0}
If pi(t) > p(t) ⇒ pi(t+ 1) = pi(t)(1− γpξi(t))
If pi(t) ≤ p(t) ⇒ pi(t+ 1) = pi(t)

(11)

where η± ∈ [0, 1] are what we denote as the hiring/firing propensity of the firms. Note that this rule ensures that
there is no overshoot in production; furthermore the max in the second rule is not necessary mathematically
when η− ≤ 1, but we kept it for clarity. Each row of Eq. (11) specifies an adjustment mechanism for output
and the individual price. According to this mechanism, there is an increase in output if excess demand is
positive, and a decrease in output if excess demand is negative, i.e. if there is excess supply. The propensities
to hire/fire η± can be seen as the sensitivity of the output change to excess demand/supply. These sensitivities
are generally less than unity (i.e. the firm is not adjusting output one to one with excess demand/supply),
because there are hiring (firing) costs of different kinds (real costs, time-to-hire, administrative constraints,
inertia, etc.). Firing costs generate “labour hoarding”, while hiring costs prevents the economy to adapt quickly
to excess demand. Hiring and firing costs may not be identical. Therefore the sensitivity to excess demand (or
hiring propensity η+) may be different from the sensitivity to excess supply (or firing propensity η−). Note
that because of the min{Di(t) − Yi(t), µu(t)} term in Eq. (11), the total production of the model is bounded
by
∑
i Yi(t) = µNFε(t) ≤ µNF, as it should be because ε(t) = 1 corresponds to full employment and in that

case
∑
i Yi(t) = µNF. However, in the following we will sometimes (when stated) remove this bound for a

better mathematical tractability. This amounts to replace min{Di(t)−Yi(t), µu(t)} → Di(t)−Yi(t) in Eq. (11)
(it corresponds to choosing µ = ∞). Removing the bound corresponds to a situation where labor resources
can freely exceed the working population, such that the high employment phase translates into an exponential
explosion of the economy output, which is of course unrealistic.

• Accounting of firms and households. Each firm i = 1 · · ·NF pays a total wage bill Wi(t)Yi(t) and has total sales
pi(t) min{Yi(t), Di(t)}. Moreover, if the profit of the firm Pi(t) = pi(t) min{Yi(t), Di(t)}−Wi(t)Yi(t) is positive,
the firm pays a dividend δ × Pi(t) to the households.10

Note that if Di > Yi, the demand for goods of firm i cannot be immediately satisfied, and we assume that in
this case households involuntarily save and delay their consumption until the next round (but still using Eq. (6)
with the correctly updated savings). The actual consumption C(t) (limited by production) is therefore given
by:

C(t) :=

NF∑
i=1

pi(t) min{Yi(t), Di(t)} ≤ CB(t) =

NF∑
i=1

pi(t)Di(t). (12)

9 Since at this stage wages are equal among firms the distribution is uniform. Below we allow firms to update their wage. A higher wage
will then translate in the availability of a larger share of unemployed workers in the hiring process.

10 We have also considered the case where firms distribute a fraction δ of the profits plus the reserves. See below.
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In summary, the accounting equations for total accumulated savings S(t) and firms’ net deposits Ei(t) – possibly
negative – are the following (here θ(x ≥ 0) = 1 and θ(x < 0) = 0 is the Heaviside step function):

Pi(t) = pi(t) min{Yi(t), Di(t)} −Wi(t)Yi(t) ,

Ei(t+ 1) = Ei(t) + Pi(t)− δPi(t)θ(Pi(t)) ,

S(t+ 1) = S(t)−
∑
i

Pi(t) + δ
∑
i

Pi(t)θ(Pi(t)) ≡ S(t) + I(t)− C(t) ,
(13)

where I(t) is the total income of the households (wages plus dividends) and C(t) is the money actually spent
by households, which is in general less than their consumption budget CB(t). This corresponds to unvoluntarly
households savings whenever production is below demand.

Note that total money S(t) +
∑
i Ei(t) is clearly conserved since ∆S(t) = −∆[

∑
i Ei(t)] for cash-flow consistency

in a closed economy.

• Bank accounting. As mentioned above, we allow the firms’ net deposits to become negative, which we interpret
as the firm being in need of an immediate extra line of credit. Depending on the financial fragility of the firm
(defined below), the bank may or may not agree to restructure the debt and provide this extra credit. If it does,
our accounting procedure can be rephrased in the following way. In case of negative net deposits Ei(t) < 0 the
bank provides the firm with the extra liquidity needed to pay the wages. The equity of the firm is therefore
equal to its deposits when positive, and is close to zero, but still equal to what it needs, when the net deposits
is negative. However, when the firm becomes too indebted, the bank will not provide the liquidity needed to
pay the wages, leading to negative equity and bankruptcy. From an accounting perspective the matrix balance
sheet of our model can be summarized as follows. We assume the bank’s equity to be constant in time (let it be
0 for simplicity). The bank holds at the beginning of the simulation a quantity M of currency (issued by the
central bank, not modeled here) and therefore has assets equal to M throughout the simulation.

Households have deposits S > 0 while firms have either deposits (if Ei > 0) or liabilities (if Ei < 0). Defining
E+ =

∑
i max (Ei, 0) and E− = −

∑
i min (Ei, 0), the balance sheet of the banking system is therefore:

M + E−(t) = S(t) + E+(t) ≡ X (t), (14)

which means that the total amount of deposits X at any time is equal to initial deposits plus deposits created
by the banking system when issuing loans. In this setting reserves M at the bank are kept unchanged when
loans are issued (as outlined for example in [35]) and deposits increase (decrease) only when loans are issued
(repaid). Correspondingly, the fundamental time-invariant macroeconomic accounting identity

S(t) + E+(t)− E−(t) = S(t) +
∑
i

Ei(t) = M (15)

is obeyed and amounts to our money conserving equation.

• Financial fragility and bankruptcy resolution. We measure the indebtement level of a firm through the ratio of
(negative) net deposits over payroll (equal, to a good approximation, to total sales):

Φi = −Ei/(WiYi) (16)

which we interpret as a measure of financial fragility. (Implicitly, this assumes that the “real assets” of the firms
– not modeled here – are proportional to total payroll). If Φi(t) < Θ, i.e. when the level of debt is not too high
compared to the size of the company, the firm is allowed to continue its activity. If on the other hand Φi(t) ≥ Θ,
the firm defaults.

When firms exceeds the bankrupcty threshold the default resolution we choose is the following. We first define
the set Hi of financially “healthy” firms that are potential buyers for the defaulted firm i. The condition for
this is that Ej(t) > max(−Ei(t),ΘYj(t)Wj(t)), meaning that the firm j has a strongly positive net deposits and
can take on the debt of i without going under water.

– With probability 1 − f , f ∈ [0, 1] being a new parameter, a firm j is chosen at random in Hi; j transfers
to i the needed money to pay the debts, hence Ej → Ej + Ei (remember that Ei is negative) and Ei → 0
after the transaction. Furthermore, we set pi = pj and Wi = Wj , and the firm i keeps its employees and
its current level of production.
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– With probability f , or whenever Hi = ∅, the firm i is not bailed out, goes bankrupt and its production
is set to zero. In this case its debt Ei(t) < 0 is transferred to the households’ accumulated savings,
S(t)→ S(t) + Ei(t) in order to keep total money fixed11.

Hence, when f is large, most of the bankruptcies load weighs on the households, reducing their savings, whereas
when f is small, bankruptcies tend to fragilise the firm sector. (The Mark I+ model discussed above corresponds
to f = 1/2.) It is important to stress that changing the details of the bankruptcy rules while maintaining proper
money conservation does not modify the main qualitative message of our paper. The important point here is
that the default costs are transferred to households and firms (to ensure money conservation) and have some
repercussion on demand (through households accumulated savings) or on firms fragility (through firms net
deposits). This can create default avalanches and crises.

• Firm revival. A defaulted firm has a finite probability ϕ per unit time to get revived; when it does so its
price is fixed to pi(t) = p(t), its workforce is the available workforce, Yi(t) = µu(t), and its net deposits is the
amount needed to pay the wage bill, Ei(t) = Wi(t)Yi(t). This liquidity is provided by the households, therefore
S(t)→ S(t)−Wi(t)Yi(t) when the firm is revived, again to ensure total money conservation. Note that during
this bankrupt/revival phase, the households’ savings S(t) might become negative: if this happens, then we set
S(t) = 0 and the debt of households is spread over the firms with positive liquidity12, proportionally to their
current value of Ei, again in order to ensure total money conservation and S(t) ≥ 0.

The above description contains all the details of the definition of the model, however for full clarification a pseudo-
code of this minimal Mark 0 model is provided in Appendix B (together with the extensions discussed in Sec. IV).
The total number of relevant parameter of Mark 0 is equal to 9: c, β, γp, η±, δ,Θ, ϕ, f plus the number of firms NF.
However, most of these parameters end up playing very little role in determining the qualitative, long-time aggregate
behaviour of the model. Only two quantities play an important role, and turn out to be:

1. the ratio R = η+/η− between η+ and η−, which is meant to capture any asymmetry in the hiring/firing process.
As noted above (see Fig. 2), a rising interest rate endogeneously leads to such a hiring/firing asymmetry in
Mark I and Mark I+. But other sources of asymmetry can also be envisaged: for example, overreaction of the
firms to bad news and under-reaction to good news, leading to an over-prudent hiring schedule. Capital inertia
can also cause a delay in hiring, whereas firing can be immediate.

2. the default threshold Θ, which controls the ratio between total debt and total circulating currency. In our
minimal setting with no banks, it plays the role of a money multiplier. Monetary policy within Mark 0 boils
down to setting of the maximum acceptable debt to payroll ratio Θ.

The other parameters change the phase diagram of the model quantitatively but not qualitatively. In order of
importance, the most notable ones are f (the redistribution of debt over households or firms upon bankruptcies) and
β (the sensitivity to price) – see below.

B. Numerical results & Phase diagram

When running numerical simulations of Mark 0, we find (Fig. 3) that after a transient that can be surprisingly
long13, the unemployment rate settles around a well defined average value, with some fluctuations (except in some
cases where endogenous crises appear, see below).

We find the same qualitative phase diagram for all parameters β, γp, ϕ, δ, f . For a given set of parameters, there
is a critical value Rc of R = η+/η− separating a full unemployment phase for R < Rc from a phase where some of
the labour force is employed for R > Rc. Here Rc ≤ 1 is a value that depends on all other parameters. In Sec. V we

11 One can interpret this by imagining the presence of a bank that collects the deposits of households and lend money to firms, at zero
interest rate. If a firm goes bankrupt, the bank looses its loan, which means that its deposits (the households’ savings) are reduced.

12 Again, this can be interpreted by imagining that the firms with positive liquidity deposit their cash in the bank. When the bank needs
to provide a loan to a revived firm, or loses money due to a bankrupt, it prefers to take this money from households’ deposits, but if
these are not available, then it takes the money from firms’ deposits.

13 Think of one time step as a quarter, which seems reasonable for the frequency of price and workforce updates. The equilibration time is
then 20 years or so, or even much longer as for the convergence to the ‘bad’ state in Mark I, see Fig. 2. Albeit studying a very different
ABM, similarly long time scales can be observed in the plots shown in [33]. See also the discussion in the conclusion on this point
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FIG. 3: (Left) Phase diagram of the basic Mark 0 model with β = 2 and Θ = ∞. There are two distinct phases separated
by a critical line which depends on the parameters γp and β. The dashed lines correspond to the analytical result in Eq. (29)
which agrees well with numerical simulations for small values of η+, η− where the perturbative method of Section III-C and
Appendix C 1 is justified. For simplicity we show here only results with β = 2 but Eq. (29) is in good agreement with numerical
results up to β ∼ 4. (Right) Two typical trajectories of u(t) in the two phases (R = 5/3 in the full employment line and R = 3/5
in the full unemployment line). The other parameters are: NF = 10 000, γp = 0.1, Θ = ∞, ϕ = 0.1, β = 2, c = 0.5. δ = 0.02
and ϕ = 1.

explain how the phase transition at Rc and other features of the model can be understood by means of approximate
analytical calculations.

The transition is particularly abrupt in the limit Θ → ∞ (no indebtment limit), in which the unemployment rate
jumps all the way from 0 to 1 at Rc, see Fig. 3. The figure shows that indeed only the ratio R = η+/η− is relevant,
the actual values of η± only change the time scale over which the production fluctuates. Moreover, the phase diagram
is almost independent of NF, which confirms that we are effectively in a limit where the number of firms can be
considered to be very large14.

Interestingly, for finite values of Θ, the phase diagram is more complex and shown in Fig. 4. Besides the full
unemployment phase (region 1, which always prevails when R < Rc, we find three other different regions for R > Rc,
that actually survive many extensions of Mark 0 that we have considered (see section IV):

• At very large Θ (region 4, “FE”), the full employment phase persists, although a small value of the unemployment
appears in a narrow region around R ≈ Rc. The width of this region of small unemployment vanishes as Θ
increases.

• At very low Θ (region 2, “RU”), one finds persistent “Residual Unemployment” in a large region of R > Rc.
The unemployment rate decreases continuously with R and Θ but reaches values as large as 0.5 close to R = Rc
(see Fig. 4, Bottom Left).

• A very interesting endogenous crises phase appears for intermediate values of Θ (region 3, “EC”), where the
unemployment rate is most of the time very close to zero, but endogenous crises occur, which manifest themselves
as sharp spikes of the unemployment that can reach quite large values. These spikes appear almost periodically,
and their frequency and amplitude depend on some of the other parameters of the model, in particular f and
β, see Fig. 4, Bottom Right.

The phase diagram in the plane R−Θ is presented in Fig. 4, together with typical time series of the unemployment
rate, for each of the four phases.

We also show in Fig. 5 a trajectory of u(t) in the good phase of the economy (FE, region 4) and zoom in on
the small fluctuations of u(t) around its average value. These fluctuations reveal a clear periodic pattern in the low
unemployment phase; recall that we had already observed these oscillations within Mark I+. Oscillating patterns

14 Actually, in the specific case Θ = ∞, even NF = 1 provides a similar phase diagram, although the critical Rc slightly depends on NF

when this number is small



14

0 1 2 3 4
R

0

2

4

6

8

10

Θ 1 - FU

increasing employment2 - RU

3 - EC

4 - FE

decreasing f
increasing β

0 10 20 30 40

time / 1000

0

0.2

0.4

0.6

0.8

1

u

1 - FU

2 - RU

3 - EC

4 - FE

0 1 2 3 4
R

0

0.2

0.4

0.6

0.8

1

u

Θ = 0.5
Θ = 1.0

Θ = 1.5

0 10 20 30 40

time / 1000

0

0.1

0.2

0.3

0.4

0.5

u

f = 1.0 -- β = 0
f = 1.0 -- β = 1
f = 0.9 -- β = 0
f = 1.0 -- β = 5
f = 0.5 -- β = 0

FIG. 4: (Top Left) Phase diagram of the basic Mark 0 model in the R − Θ plane, here with NF = 5000, c = 0.5, γp = 0.05,
δ = 0.02, ϕ = 0.1. Here we keep the ’extreme’ cases β = 0 and f = 1 since the dependence of phase boundaries on β and on
f (here reported schematically) is shown in detail in Fig. III C 3. The other parameters are irrelevant. There are four distinct
phases separated by critical lines. (Top Right) Typical time series of u(t) for each of the phases. (Bottom Left) Stationary
value of the unemployment rate as a function of R for different values of Θ in phase 2. (Bottom Right) Typical trajectories of
u(t) in the Endogenous Crisis phase (region 3) for different values of f and β, the other parameters are kept fixed. Note that
increasing β or decreasing f lead to small crisis amplitudes.

(perhaps related to the so-called business cycle) often appear in simplified first order differential models of the macro-
economy; one of the best known examples is provided by the Goodwin model [37, 38], which is akin to a predator-prey
model where these oscillations are well known. But these oscillations do also show up in other ABMs, see [31, 33].
Note that these fluctuations/oscillations around equilibrium do not regress when the number of firms get larger. We
have simulated the model with NF = 10 000 firms and NF = 1 000 000 firms with nearly identical amplitude and
frequencies for these fluctuations. We will offer some insight on the origin of these oscillations in Sec. V. Note that
we do not expect such oscillations to remain so regular in the real economy, in particular because exogeneous shocks
are absent from our model and because we assume that all firms are characterised by the very same adaptation time
scale γp.

C. Qualitative interpretation. Position of the phase boundaries

An important quantity that characterizes the behavior of the model in the “good” phase of the economy (i.e. for
R > Rc) is the global leverage (debt-to-equity) ratio k:

k(t) =
E−(t)

S(t) + E+(t)
= 1− M

S(t) + E+(t)
(17)
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FIG. 5: Left : Typical time evolution of the unemployment u, starting from an initial condition u = 0.5, for the basic Mark
0 model in the Full Employment phase (region 4). The trajectory leading to a “good” state of the economy is obtained for
η+ = 0.5 and η− = 0.3. Note the clear endogenous “business cycles” that appear in that case. These runs are performed with
NF = 10 000 firms, c = 0.5, β = 2, γp = 0.1, ϕ = 0.1, Θ = 5, δ = 0.02.
Right : Oscillations for the average price and the average accumulated savings per household (each shifted by their average
values for clarity) for the same run as in the Left figure. When prices are low, savings increase, while when prices are high,
savings decrease. See Sec. V for a more detailed description.

where, due to money conservation, k ≤ 1. The good state of the economy is characterized by a large average value of
k reflecting the natural tendency of the economy towards indebtment, the level of which being controlled in Mark 0
by the parameter Θ (the average value of k increases with Θ).15 Interestingly, in regions 2-RU and 4-FE k(t) reaches
a stationary state, whereas in region 3-EC its dynamics is characterized by an intermittent behavior corresponding
to the appearance of endogenous crises during which indebtment is released through bankruptcies.

1. The EC phase

This phenomenology can be qualitatively explained by the dynamics of the distribution of firms fragilities Φi. For
R > Rc, firms overemploy and make on average negative profits, which means that the Φi’s are on average drifting
towards the bankruptcy threshold Θ.

• When Θ is small enough (i.e. in region 2-RU) the drift is continuously compensated by the reinitialization of
bankrupted firms and the fragility distribution reaches a stationary state.

• For intermediate values of Θ, however, (i.e. in region 3-EC) the number of bankruptcies per unit of time
becomes intermittent. Firms fragilities now collectively drift towards the bankruptcy threshold; as soon as firms
with higher fragilities reach Θ, bankruptcies start to occur. Since for f large enough, bankruptcies are mostly
financed by households, demand starts falling which has the effect of increasing further the negative drift. This
feedback mechanism gives rise to an avalanche of bankruptcies after which most of the firms are reinitialized
with positive liquidities. This mechanism has the effect of synchronizing the fragilities of the firms, therefore
leading to cyclical waves of bankruptcies, corresponding to the unemployment spikes showed in Fig. 4. The
distribution of firms fragilities does not reach a stationary state in this case.

• When Θ� 1 (i.e. region 4-FE), households are wealthy enough to absorb the bankruptcy cost without pushing
the demand of goods below the maximum level of production reached by the economy.16 Hence, the economy
settles down to a full employment phase with a constant (small) rate of bankruptcies.

15 In a further version of the model, a central bank will be in charge of controlling k through a proper monetary policy.
16 The amount of money circulating in the economy increases with Θ and for R > Rc it is largely channelled to households savings since

firms have on average negative liquidities.
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The above interpretation is supported by a simple one-dimensional random walk model for the firms assets, with a drift
that slef-consistently depends on the number of firms that fail. This highly simplified model accurately reproduces
the above phenomenology, and is amenable to a full analytical solution, which will be published separately.

The existence of the EC phase is a genuinely surprising outcome of the model, which was not put by hand from the
outset (see our discussion in the first lines of the Introduction section above). Crises occur there not as a result of
sweeping parameters through a phase transition (as is the case, we argued, of Mark I with a time dependent interest
rate) but purely as a result of the own dynamics of the system.

2. The role of β

The dependence of the phase boundaries on the different parameters is in general quite intuitive. The dependence
of aggregate variables on β, for example, is interesting: everything else being kept equal, we find that increasing β (i.e.
increasing the price selectivity of buyers), increases the level of unemployment (see inset of Fig. 6) and the amplitude
of the fluctuations around the average value (a similar effect was noted in [29]). Increasing γp increases the dispersion
of prices around the average value and is thus similar to increasing β.

Increasing β has also, within the present setting of Mark 0, some counter-intuitive effects: it increases both the
average price compared to wages and the profits of firms, hence stabilizing the FE phase and shifting its boundary
with EC to lower values of Θ and Rc (see Fig. 6 for the amplitude of region 3-EC as a function of β. This effect can be
understood by considering the demand-production gap Gi = Di−Yi as a function of the price difference δpi = pi− p̄.
For a fixed value of Gi the rules for price and production updates are independent of β; however, the response of
the demand to a price change is stronger for higher values of β: for small values of δpi one finds approximately
Gi ≈ −C(β)δpi, where C(β) > 0 is increasing with β. As a consequence, the absolute value of the gap, |Gi| for a
given value of |δpi| is on average increasing with β. Therefore, the total amount of unsold goods

∑
i max [Yi −Di, 0]

and households accumulated savings S also increase with β: households involuntarily save more when they are more
selective on prices. An increased amount of savings is in turn responsible for the average price increase while the
households’ higher wealth expands the FE region by shifting its boundary to lower values of Θ. Note, however, the
effect of β on the average price is numerically very small and depends sensitively on the precise consumption rule. For
example, if we insist that households fully spend their consumption budget CB(t) by looking for available products
at a higher price (as in Mark I), then the above effect disappears (see Section V).

3. The role of f

A potentially more relevant discussion concerns the effect of the bankruptcies on the financial health of the firm
sector. Decreasing f (i.e. the financial load taken up by households when bankruptcies occur) also stabilize, as
expected, the full employment phase. Such a stabilization can also be achieved by distributing a fraction δ+ of the
profit plus the total positive liquidity of the firms (instead of a fraction δ of the profits only), which has the obvious
effect of supporting the demand. In fact, we find that as soon as f ≤ 0.81 or δ+ ≥ 0.25, the Endogenous Crisis
phase disappears and is replaced by a continuous cross-over between the Residual Unemployment phase and the Full
Employment phase (see Fig. 6).

D. Intermediate conclusion

The main message of the present section is that in spite of many simplifications, and across a broad range of
parameters, the phase transition observed in Mark I as a function of the baseline interest rate is present in Mark 0
as well. We find that these macroeconomic ABMs generically display two very different phases – high demand/low
unemployment vs. low demand/high unemployment, with a boundary between the two that is essentially controlled
by the asymmetry between the hiring and firing propensity of the firms (compare Figs. 2 & 3).

Moreover, in the Mark 0 model there is an additional splitting of the low unemployment phase in several regions
characterized by a different dynamical behaviour of the unemployment rate, depending on the level of debt firms can
accumulate before being forced into bankruptcy. We find in particular an intermediate debt region where endogenous
crises appear, characterized by acute unemployment spikes. This Endogenous Crisis phase disappears when households
are spared from the financial load of bankruptcies and/or when capital does not accumulate within firms, but is
transferred to households through dividends. Clearly, these different phases will coexist if the model parameters
themselves evolve with time, which one should expect in a more realistic version of the model.
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FIG. 6: Phase boundary location Θc as a function of the price sensitivity β (left) and of the debt share parameter f (right).
Circles correspond to the location of the boundary between regions 2-RU and 3-EC while squares correspond to the boundary
between regions 3-EC and 4-FE. In the inset of both figures we plot the average unemployment rate as a function of Θ for
different values of β and f . For f ≤ 0.81 region 4-EC disappears and the average value of the unemployment continuously goes
to 0 without the appearance of endogenous crises. Increasing β shrinks the amplitude of region 3-EC which however remains
finite for β � 1. As a criterion for being in region 3-EC we require that the amplitude of the crises max (u) −min (u) stays
above 5%. Parameters are: N = 5000, R = 3 (ηm = 0.1), δ = 0.02, ϕ = 0.1, γp = 0.05.

We now turn to the first extension of Mark 0 allowing for a wage dynamics that lead to long term inflation or
deflation, absent in the above version of the model. Finally, several other extensions of the model will be briefly
discussed and presented in a separate publication.

IV. EXTENSION OF MARK 0: WAGE UPDATE

As emphasized above, the Mark I+ and Mark 0 models investigated up to now both reveal a generic phase transition
between a “good” and a “bad” state of the economy. However, many features are clearly missing to make these models
convincing – setting up a full-blown, realistic macroeconomic Agent-Based Model is of course a long and thorny
endeavour which is precisely what we want to avoid at this stage, focusing instead on simple mechanisms. Still, it
is interesting to progressively enrich these simplified models not only to test for robustness of our phase diagram but
also to investigate new effects that are of economic significance. We consider here wage dynamics, which is obviously
an important ingredient in reality. Wage dynamics leads to some relevant effects, in particular the appearance of
inflation. Wage dynamics is indeed an item missing from both the basic Mark 0 and Mark I models considered above,
which assume fixed wages across time and across firms. Clearly, the ability to modulate the wages is complementary
to deciding whether to hire or to fire, and should play a central role in the trajectory of the economy as well as in
determining inflation rates.

Introducing wages in Mark 0 again involves a number of arbitrary assumptions and choices. Here, we follow (in
spirit) the choices made in Mark I for price and production update, and propose that at each time step firm i updates
its wage as:

WT
i (t+ 1) = Wi(t)[1 + γwεξ

′
i(t)] if

{
Yi(t) < Di(t)

Pi(t) > 0

Wi(t+ 1) = Wi(t)[1− γwuξ′i(t)] if

{
Yi(t) > Di(t)

Pi(t) < 0

(18)

where u = 1 − ε is the unemployment rate and γw a certain parameter; Pi(t) = min(Di(t), Yi(t))pi(t) −Wi(t)Yi(t)
is the profit of the firm at time t and ξ′i(t) an independent U [0, 1] random variable. If WT

i (t + 1) is such that the
profit of firm i at time t with this amount of wages would have been negative, Wi(t + 1) is chosen to be exactly at
the equilibrium point where Pi = 0, hence Wi(t+ 1) = min(Di(t), Yi(t))pi(t)/Yi(t); otherwise Wi(t+ 1) = WT

i (t+ 1).
The above rules are intuitive: if a firm makes a profit and it has a large demand for its good, it will increase the

pay of its workers. The pay rise is expected to be larger if unemployment is low (i.e. if ε is large) because pressure
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FIG. 7: (Left) Phase diagram in the R−Θ plane of the extended Mark 0 model with wage update with γw = γp. The parameters
of the basic model are the same as in Fig. 4: NF = 5000, c = 0.5, γp = 0.05, δ = 0.02, ϕ = 0.1, f = 1, β = 0. As for the
basic model, there are four distinct phases separated by critical lines. Wage update brings in inflation in the Full Employment
phase, and deflation in the full unemployment phase. Endogenous crises are characterized by alternating cycles of inflation and
deflation. Interestingly, we find that the location of phase boundaries is in this case almost untouched by changes in both β
and f ; the other parameters are irrelevant. Note that the wage update strongly stabilizes the full employment phase. (Right)
A typical trajectory of u(t) for each of the phases. In the inset, the price dynamics is shown, displaying inflation and deflation.

on salaries is high. Conversely, if the firm makes a loss and has a low demand for its good, it will reduce the wages.
This reduction is larger when unemployment is high because pressure on salaries is low. In all other cases, wages are
not updated.

When a firm is revived from bankruptcy (with probability ϕ per unit time), its wage level is set to the production
weighted average wage of all firms in activity.

The parameters γp,w allow us to simulate different price/wage update timescales. In the following we set γp = 0.05
and γw = zγp with z ∈ [0, 1]. The case z = 0 clearly corresponds to removing completely the wage update rule, such
that the basic version of Mark 0 is recovered. The extended version of Mark 0 that we consider below is therefore
characterized by single additional parameter γw = zγp, describing the frequency of wage updates.

A. Results: variable wages and the appearance of inflation

In our money conserving toy economies17, a stationary inflation rate different from zero is possible as long as the
ratio p(t)/W (t) fluctuates around a steady value. In absence of wage update, we have a fixed W ≡ 1 and inflation is
therefore impossible. The main effect induced by wage dynamics is therefore the possibility of inflation.

Using the wage update rules defined below, we found that the average inflation rate depends on parameters such
as the households propensity to consume c and the price/wage adjustment parameters γp,w. Most interestingly, we
observe a strong dependence of the inflation rate upon the bankruptcy threshold Θ, with large Θ’s triggering high
inflation and low Θ’s corresponding to zero inflation. For intermediate Θ’s, periods of inflation and deflation may
alternate and the model displays interesting instabilities.

We now analyze the influence of wage adjustments on the phase transitions discussed in the previous sections. The
phase diagram for z = 1 (γw = γp) is reported in Fig. 7. The phenomenology that we find is again very similar to the
simple Mark 0 without wage update, except for inflation. The most interesting effect is the appearance of inflation
in the “good” phases of the economy, and deflation in the “bad” phases, as shown in Fig. 7. When Θ � 1, we find
again a first order critical boundary at R = Rc that separates a high unemployment phase (with deflation) from a low
unemployment phase (with inflation). For R > Rc we see again two additional phases: “EC”, with endogenous crises
and, correspondingly, alternating periods of inflation and deflation but stable prices on the long run, and “RU”, for
small Θ, where there is no inflation but a substantial residual unemployment rate (see Fig. 7).

17 Recall that the physical money is conserved in the model, but virtual money creation is still possible through firms’ indebtement.
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The appearance of endogenous crises is consistent with what discussed in section III B and is related to situations
in which the debt-to-savings ratio k(t) grows faster than prices. From this point of view, increasing γw allows firms
to better adapt wages (and thus prices) and to absorb the indebtment through inflation; region EC indeed shrinks
when increasing γw. Note that relating the parameters γp,w to the flexibility of the labor and goods markets is not
straightforward. In this sense, it would be instead useful to study the effects of asymmetric upward/downward wage
and price flexibilities (for example by defining different γ±p,w) in order to understand whether improving the flexibility
of the labor and goods markets destabilizes the economy [40–42]. If, however, one considers the ratio z = γw/γp as
an indicator of wages flexibility (relative to prices flexibility), our results suggests that higher labor flexibility has a
stabilizing effect.

We also observe that the oscillatory pattern found for the basic model persists as long as γw � γp, i.e. when wage
updates are much less frequent that price updates. The power spectrum of the model for R > Rc and Θ � 1 is
still characterized by the appearance of a peak (roughly corresponding to a period of 7 time steps). Interestingly,
we find that upon increasing the ratio z, the peak in the frequency spectrum disappears but not in a monotonous
fashion; intermediate values of z give rise to even more pronounced oscillations than for z = 0, before these oscillations
disappear for z > zc ≈ 0.25.

In conclusion, the comparison between Figs. 7 and 4 demonstrates the robustness of our phase diagram against
changes; introducing wages is a rather drastic modification since it allows inflation to set in, but still does not affect
the phase transition at Rc, nor the overall topology of the phase diagram, which confirms its relevance. Interestingly,
inflation is present in the good phases of the economy and deflation in the bad phases. Our analytical understanding
of these effects is however still poor; we feel it would be important to bolster the above numerical results by solving
simpler “toy models” as we do for the basic Mark 0 (see section V and Appendix C 1).

B. Other extensions and policy experiments

One of the final goal of our study is to have a prototype framework where one is able to run meaningful policy
experiments. In order to do that the model described so far is lacking a number of important ingredients, namely
a central bank exogenously setting interest rates level and the amount of money in circulation. This is the project
on which we are currently pursuing, with encouraging results [43]. Still, even within the simplistic framework of
Mark 0, one can envisage an interesting prototype policy experiment which consists in allowing the “central bank”
to temporarily increase the bankruptcy threshold Θ in times of high unemployment. Fig. 8 shows an example of
this: the economy is, in its normal functioning mode, in the EC (region 3) of the phase diagram, with R = 2 and
(say) Θ = 2. This leads in general to a rather low unemployment rate u but, as repeatedly emphasized above, this is
interrupted by acute endogenous crises. The central bank then decides that whenever u exceeds 10%, its monetary
policy becomes accommodating, and amounts to raising Θ from its normal value 2 to – say – Θ = 10. As shown
in Fig. 8, this allows the bank to partially contain the unemployment bursts. However, quite interestingly, it also
increases the crisis frequency, as if it did not allow the economy to fully release the accumulated stress. We expect
that this phenomenology will survive in a more realistic framework.

We have also explored other potentially interesting extensions of Mark 0, for example adding trust or confidence,
that may appear and disappear on time scales much shorter than the evolution time scale of any “true” economic
factor, and can lead to market instabilities and crises (see e.g. [5, 39, 44]). There are again many ways to model the
potentially destabilizing feedback of confidence. One of the most important channel is the loss of confidence induced
by raising unemployment, that increases the saving propensity of households and reduces the demand. The simplest
way to encode this in Mark 0 is to let the “c” parameter, that determines the fraction of wages and accumulated
savings that is devoted to consumption, be an increasing function of the employment rate ε = 1− u. We indeed find
that the confidence feedback loop can again induce purely endogenous swings of economic activity. Similarly, a strong
dependence of c on the recent inflation can induce instabilities [43].

V. ANALYTICAL DESCRIPTION

We attempt here to describe analytically some aspects of the dynamics of Mark 0 in its simplest version, namely
without bankruptcies (Θ =∞ for which ϕ and f become irrelevant), with β ≥ 0, fixed wages W = 1, and no dividends
(δ = 0). For simplicity, we also fix µ = 1 and c = 1/2. The only relevant parameters are therefore β, γp and η±. The
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FIG. 8: Here we show an example of a “toy” policy experiment in the Mark 0 model without wage update (i.e γw = 0). We
first run a simulation (the “without policy” line) with a constant value Θ = 2 lying in the 3-EC region of Fig. 3. We then run
the same simulation with a prototype central bank which increases Θ to 10 as long as u exceeds the threshold of 10%. Note
that unemployment is partially contained, but the crisis frequency concomitantly increases. The other parameters values are:
N = 10 000, R = 2, γp = 0.05, ϕ = 0.1, δ = 0.02, f = 1.

equations of motion of this very minimal model are:

If Yi(t) < Di(t) ⇒


Yi(t+ 1) = Yi(t) + min{η+[Di(t)− Yi(t)], 1− Y (t)}
If pi(t) < p(t) ⇒ pi(t+ 1) = pi(t)(1 + γpξi(t))

If pi(t) ≥ p(t) ⇒ pi(t+ 1) = pi(t)

If Yi(t) > Di(t) ⇒


Yi(t+ 1) = max{Yi(t)− η−[Yi(t)−Di(t)], 0}
If pi(t) > p(t) ⇒ pi(t+ 1) = pi(t)(1− γpξi(t))
If pi(t) ≤ p(t) ⇒ pi(t+ 1) = pi(t)

Di(t) =
c

pi(t)

e−β(pi(t)−p(t))

Z(t)
[max{s(t), 0}+ Y (t)], Z(t) :=

∑
i

e−β(pi(t)−p(t))

Ei(t+ 1) = Ei(t)− Yi(t) + pi(t) min{Yi(t), Di(t)}
s(t) = M0 − E(t) .

(19)

Here M0 is the total money in circulation, whose precise value is irrelevant for this discussion, and s = S/NF are the
savings per agent. Overlines denote an average over firms, which is flat for Y = N−1

F

∑
i Yi(t) and E = N−1

F

∑
i Ei(t)

while it is weighted by production for p, see Eq. (8). Note that the basic variables here are {pi, Yi, Ei}, all the other
quantities are deduced from these ones.

In the high employment phase, the model admits a stationary state with Y st ∼ 1. To show this, let us focus on the
case where γp is very small, but not exactly zero, otherwise of course the price dynamics is frozen. The stationary
state is attained after a transient of duration ∼ 1/γp, and in the stationary state fluctuations between firms are very

small in such a way that pi ∼ p and Yi ∼ Y . A stationary state of Eq. (19) has Yi(t + 1) = Yi(t) and therefore
Yi = Di, hence Yi = Di = Y . Furthermore, from Ei(t + 1) = Ei(t) we deduce that pi = p = 1. Finally, we have
Di = Y = (s + Y )/2, which gives s = Y and E = M0 − Y . One obtains therefore a continuum of stationary states,
because the production Y or equivalently the employment are not determined by requiring stationarity. However, we
will show in the following that these equilibria become unstable as soon as fluctuations are taken into account (γp > 0).

We will see that fluctuations can induce either an exponentially fast decrease of Y towards zero (corresponding to
the full unemployment phase), or an exponentially fast grow of Y , which is therefore only cutoff by the requirement
Y ≤ µ = 1, corresponding to full employment. It is therefore natural to choose the stationary state with Y = 1 as
a reference, and study the effect of fluctuations around this state. We therefore consider the stationary state with
Yi = Di = pi = 1, and Ei = M0 − 1 in such a way that s = Y = 1.

For analytical purposes, we will focus below on the limit in which η±, γp → 0, in such a way that we can expand
around the high employment stationary state and obtain results for the phase transition point. Numerically, the fact
that γp and/or η± are small does not change the qualitative behavior of the model.
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In order to consider small fluctuations around the high employment stationary state, we define the following
variables:

Yi(t) = 1− γpζi(t) ,
pi(t) = eγpλi(t) ,

Ei(t) = M0 − 1− γpαi(t) .
(20)

Note that in the following, overlines over ζ, α, λ always denote flat averages over firms. Using pi(t) = 1 + γpλi(t) +
(γpλi(t))

2/2 for γp → 0, one finds that, to order γ2
p :

e−βpi(t)

Z(t)
≈ 1− βγp(λi(t)− λ(t))− 1

2
βγ2

p

[
(1− β)(λ2

i (t)− λ2(t)) + 2βλ(t)(λi(t)− λ(t))

]
. (21)

Since we will find later that λ(t) is itself of order γp, we will drop the part of the last term in the above expression,
which is O(γ3

p), i.e.

e−βpi(t)

Z(t)
≈ 1− βγp(λi(t)− λ(t))− 1

2
β(1− β)γ2

pλ
2
i (t). (22)

A. Stability of the high employment phase

To study the stability of the high employment phase, we make two further simplifications.

1. We neglect the fluctuations of the savings and fix αi ≡ 0. This is justified if the employment rate varies slowly
over the time scale τc = −1/ ln(1−c) that characterizes the dynamics of the savings. But, as we shall show below,
the dynamics of employment becomes very slow in the vicinity of the phase transition, hence this assumption
seems justified.

2. In order to proceed analytically, we also consider the limit η+, η− → 0 with η+ = Rη− and R of order one.
In fact, we will even assume below that η± � γp. Then, it is not difficult to see that ζi is a random variable
of order η+ and is therefore also very small. We define ζi = η+zi. We believe that these approximations are
actually quite accurate, as is confirmed by the comparison of the theoretical transition line with numerical data
(see Fig. 3).

With these further simplifications (i.e. setting αi = 0 and assuming that γp, η± are small and zi = O(1)), we have,
together with Eq. (20):

Di(t) = 1− γp(λi(t) + β(λi(t)− λ(t))) +
1

2
γ2
pλ

2
i (1 + β + β2) +O(γpη+) +O(γ3

p) ,

p(t) = 1 + γpλ(t) +
1

2
γ2
pλ

2(t) +O(γpη+) +O(γ3
p) ,

(23)

If, as announced above we further assume that η+ � γp, it is justified to keep the terms of order γ2
p while neglecting

the terms of order γpη+ and γ3
p .

We also note that if |λi| is bounded by a quantity of order 1 (which we will find below), then the condition
λi(t)+β(λi(t)−λ(t)))− 1

2γpλi(t)
2 > 0 is equivalent to λi(t)+β(λi(t)−λ(t))) > 0. Then the first two lines of Eq. (19)

become

If λi(t) <
β

1 + β
λ(t) ⇒

{
zi(t+ 1) = zi(t)−min{−λi(t)− β(λi(t)− λ(t)) + 1

2γpβ̂λ
2
i , z(t)}

λi(t+ 1) = λi(t) + ξi(t)− 1
2γpξi(t)

2

If λi(t) >
β

1 + β
λ(t) ⇒

{
zi(t+ 1) = zi(t) + 1

R [λi(t) + β(λi(t)− λ(t))− 1
2γpβ̂λ

2
i ]

λi(t+ 1) = λi(t)− ξi(t)− 1
2γpξi(t)

2

(24)

where β̂ = 1 + β + β2. Therefore, in this limit, the evolution of λ decouples from that of ζ (or z). Note that from

Eq. 24 one has −1− β
1+βλ(t)− γp/2 < λ < 1− β

1+βλ(t)− γp/2 (which we rewrite in the form λmin < λ < λmax).
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From the simplified evolution equation Eq. 24 we now obtain the evolution of the probability distribution Pt(λ)
and for z(t), which are by definition:

Pt+1(λ) =

∫ 1

0

dξ

∫ λmax

β
1+β λ(t)

dλ′Pt(λ
′)δ
(
λ− λ′ + ξ +

γp
2
ξ2
)

+

∫ 1

0

dξ

∫ β
1+β λ(t)

λmin

dλ′Pt(λ
′)δ
(
λ− λ′ − ξ +

γp
2
ξ2
)
, (25)

and

z(t+1) = z(t)+
1

R

∫ λmax

β
1+β λ(t)

dλPt(λ)

(
λ+ β(λ− λ)− 1

2
γpβ̂λ

2

)
−
∫ β

1+β λ(t)

λmin

dλPt(λ) min

{
−λ− β(λ− λ) +

1

2
γpβ̂λ

2, z(t)

}
.

(26)
Since the dynamics of λ is decoupled from the one of z, we can assume that Pt(λ) reaches a stationary state. In
Appendix C 1 we show that, at first order in γp, we have for the stationary distribution

Pst(λ) =

(
1− |λ+

βγp
4
| − γp

2
sgn(λ)λ2

)
. (27)

Hence, using the condition Pst(λ) ≥ 0 we find that |λ| ≤ 1+O(γp), consistently with the assumptions we made above.

From this result, we also find that λ = −γp(1 + β)/4.
Note that the average price here decreases as β increases, confirming the discussion in Section III C 2. Indeed, we

have neglected the fluctuations of S in the above calculation, while, as explained in Section III C 2, it is the increase
of involuntary savings (and thus of S) with β that leads to the average price increase. As a further confirmation, one
can easily simulate Eqs. (24) with αi 6= 0, and find dλ/dβ > 0 in this case.

Let us now discuss the dynamics of z(t). If at some time t we have z(t) = 0, then it is clear from Eq. (26) that
z(t) will grow with time, and it will continue to do so unless the last term in the equation becomes sufficiently large.
Recalling that |λ| ≤ 1 + O(γp), it is clear that even if z(t) becomes very large, the last term in Eq. (26) can be at

most given by
∫ 0

−∞ dλPst(λ)
(
−λ− β(λ− λ) + 1

2γpλ
2
)
. Therefore, if

1

R

∫ λmax

−γpβ/4
dλPst(λ)

(
λ+ β(λ− λ)− 1

2
γpβ̂λ

2

)
>

∫ −γpβ/4
λmin

dλPst(λ)

(
−λ− β(λ− λ) +

1

2
γpβ̂λ

2

)
, (28)

then z(t) will continue to grow with time, and Y (t) = 1 − γpη+z(t) will become very small and the economy will
collapse. Conversely, if the condition in Eq. (28) is not satisfied, then Eq. (26) admits a stationary solution with
0 < zst <∞. Using Eq. (27), the critical boundary line finally reads:18

Rc =
η+

η−
=

∫ λmax

−γpβ/4 dλPst(λ)
(
λ+ β(λ− λ)− 1

2γpβ̂λ
2
)

∫ −γpβ/4
λmin

dλPst(λ)
(
−λ− β(λ− λ) + 1

2γpβ̂λ
2
) ≈ 1− γp

(2 + β)2

2(1 + β)
+ ... (29)

where we used the condition γp < 4/(β + 2) which is always verified for 0 < β < +∞ and γp → 0. As one can see
in Fig. 3 this results is in good agreement with numerical result for β = 2. We therefore find, interestingly, that
increasing β decreases the value of Rc, i.e. stabilizes the high employment phase, as indeed discussed above, see Fig.
4 and the discussion around it.

In other words, the ζi perform a biased random walk, in presence of a noise whose average is given by the last
two terms in Eq. (26) (of course, when ζ is too small the minimum in the last term is important, because it is
there to prevent ζ from becoming negative). The system will evolve towards full employment, with ζ = O(η+) and
Y = 1−O(γpη+), whenever the average noise is negative, and to full collapse, with ζ →∞ and Y = 0, otherwise. The
critical line is given by the equality condition, such that the average noise vanishes. Therefore, right at the critical
point, the unemployment rate makes an unbiased random walk in time, meaning that its temporal fluctuations are
large and slow. This justifies the “adiabatic” approximation19 made above, that lead us to neglect the dynamics of
the savings.

18 It would be interesting to compute the first non trivial corrections in η to the transition line. We leave this for a later study.
19 This refers, in physics, to a situation where a system is driven by an infinitely slow process. One can then consider the system to be

always close to equilibrium during the process.
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B. Oscillations in the high employment phase

As discussed above, in the FE phase macroeconomic variables display an oscillatory dynamics, see Fig. 5. Intuitively,
the mechanism behind these oscillations is the following. When prices are low, demand is higher than production and
firms increase the prices. But at the same time, households cannot consume what they demand, so they involuntarily
save: savings increase when prices are low. These savings keep the demand high for a few rounds even while prices
are increasing, therefore prices keep increasing above their equilibrium value. When prices are too high, households
need to use their savings to consume, and therefore savings start to fall. Increase of prices and decrease of savings
determine a contraction of the demand. At some point demand falls below production and prices start to decrease
again, with savings decreasing at the same time. When prices are low enough, demand becomes again higher then
production and the cycle is restarted. An example is shown in Fig. 5.

Based on this argument, it is clear that to study these oscillations, we need to take into account the dynamics of
the savings so we cannot assume αi = 0 as in the previous section. However, here it is enough to consider the first
order terms in γp. In terms of the basic variables in Eq. (20), the other variables that appear in Eq. (19) are easily
written as follows:

Y (t) = 1− γpζ(t) ,

s(t) = 1 + γpα(t) ,

p(t) = 1 + γpλ(t) ,

(30)

where for ζ, α, λ, overlines denote flat averages over firms, and

Di(t) = 1 + γp

(
1

2
α(t)− 1

2
ζ(t)− λi(t)

)
. (31)

Inserting this in Eq. (19), we arrive to the following equations that hold at the lowest order in γp:

If − ζi(t) <
1

2
α(t)− 1

2
ζ(t)− λi(t) ⇒


ζi(t+ 1) = ζi(t)−min{η+[ 1

2α(t)− 1
2ζ(t)− λi(t) + ζi(t)], ζ(t)}

If λi(t) < λ(t) ⇒ λi(t+ 1) = λi(t) + ξi(t)

αi(t+ 1) = αi(t)− λi(t)

If − ζi(t) >
1

2
α(t)− 1

2
ζ(t)− λi(t) ⇒


ζi(t+ 1) = ζi(t)− η−[ 1

2α(t)− 1
2ζ(t)− λi(t) + ζi(t)]

If λi(t) > λ(t) ⇒ λi(t+ 1) = λi(t)− ξi(t)
αi(t+ 1) = αi(t)− ζi(t)− 1

2α(t) + 1
2ζ(t)

(32)

From an analytical point of view, the above model is still to complex to make progress. We make therefore a further
simplification, by assuming that

ζi = Cλi , (33)

where C is a certain numerical constant. In terms of the original Mark 0 variables, this approximation is equivalent
to, roughly speaking,

pi − p ∝ (Yi −Di)− (Y −D). (34)

i.e. fluctuations of the prices are proportional to supply-demand gaps. Although numerical simulations only show
a weak correlation, the approximation (33) allows us to obtain a more tractable model that retains the basic phe-
nomenology of the oscillatory cycles and reads:

If 2(1− C)λi(t) < α(t)− Cλ(t) ⇒

{
If λi(t) < λ(t) ⇒ λi(t+ 1) = λi(t) + ξi(t)

αi(t+ 1) = αi(t)− λi(t)

If 2(1− C)λi(t) > α(t)− Cλ(t) ⇒

{
If λi(t) > λ(t) ⇒ λi(t+ 1) = λi(t)− ξi(t)
αi(t+ 1) = αi(t)− Cλi(t)− 1

2α(t) + 1
2Cλ(t)

(35)

This very minimal model, when simulated numerically, indeed gives persistent oscillations, independent on N , when
C > C∗ ≈ 0.45, and can also be partially investigated analytically, see Appendix C 1.
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C. The “representative firm” approximation

To conclude this section, we observe that there is a further simplification that allows one to retain some of the
phenomenology of Mark 0. It consists in describing the firm sector by a unique “representative firm”, NF = 1, with
production Y (t), price p(t) and demand Y (t)/p(t). The dynamics of the production and price are given by the same
rule as above, but now the dynamics of the price completely decouples:

p(t) < 1 ⇒

{
Y (t+ 1) = Y (t)(1 + η+( 1

p(t) − 1))

p(t+ 1) = p(t)(1 + γξ(t))

p(t) > 1 ⇒

{
Y (t+ 1) = Y (t)(1 + η−( 1

p(t) − 1))

p(t+ 1) = p(t)(1− γξ(t)).
(36)

Of course, this simple model misses several important effects: most notably those associated to Θ, hence the transition
between the Full Employment, Endogenous Crises, and Residual Unemployment phases in Fig. 4. In particular,
endogenous crises are never present in this case, because of the absence of a bankrupt/revival mechanism, and also
the oscillatory pattern in the Full Employment phase disappears, because in this model savings are not considered.
Still, this model is able to capture the transition between the Full Unemployment and Full Employment regions as
a function of R (see Fig. 4), as confirmed by the analytical solution, which is in fact identical to the one of the
model with NF > 1 when β = 0 and η is small. And since the model is so simple, one can hope that some of the
extensions discussed in the previous section can be at least partly understood analytically within this “representative
firm” framework (we will give a few explicit. This would be an important step to put the rich phenomenology that
we observe on a firmer basis.

VI. SUMMARY, CONCLUSION

The aim of our work (which is part of the CRISIS project and still ongoing) was to explore the possible types of
phenomena that simple macroeconomic Agent-Based Models can reproduce, and to map out the corresponding phase
diagram of these models, as Figs. 7 and 4 exemplify. The precise motivation for our study was to understand in
detail the nature of the macro-economic fluctuations observed in the “Mark I” model devised by D. Delli Gatti and
collaborators [25, 26]. One of our central findings is the generic existence, in Mark I (and variations around that
model) of a first order, discontinuous phase transition between a “good economy” where unemployment is low, and
a “bad economy” where unemployment is high. By studying a simpler hybrid model (Mark 0), where the household
sector is described by aggregate variables and not at the level of agents20, we have argued that this transition is
induced by an asymmetry between the rate of hiring and the rate of firing of the firms. This asymmetry can have
many causes at the micro-level, for example different hiring and firing costs. In Mark I, for example, it reflects the
reluctance of firms to take loans when the interest rate is too high. As the interest rate increases, the unemployment
level remains small until a tipping point beyond which the economy suddenly collapses. If the parameters are such
that the system is close to this transition, any small fluctuations (for example in the level of interest rates) is amplified
as the system jumps between the two equilibria. It is actually possible that the central bank policy (absent in our
current model), when attempting to stabilize the economy, in fact bring the system close to this transition. Indeed,
too low an interest rate leads to overheating and inflation, and too high an interest rate leads to large unemployment.
The task of the central bank is therefore to control the system in the vicinity of an instability and could therefore be
a natural realization of the enticing ‘self-organized criticality’ scenario recently proposed in [46] (see also [19]).

Mark 0 is simple enough to be partly amenable to analytic treatments, that allow us to compute approximately the
location of the transition line as a function of the hiring/firing propensity of firms, and characterize the oscillations
and the crises that are observed. Mark 0 can furthermore be extended in several natural directions. One is to allow
this hiring/firing propensity to depend on the financial fragility of firms – hiring more when firms are financially
healthy and firing more when they are close to bankruptcy. We find that in this case, the above transition survives
but becomes second order. As the transition is approached, unemployment fluctuations become larger and larger,
and the corresponding correlation time becomes infinite, leading to very low frequency fluctuations. There again, we
are able to give some analytical arguments to locate the transition line [43]. Other stabilizing mechanisms, such as

20 For a recent study exploring the idea of hybrid models, see [45].
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the bankruptcy of indebted firms and their replacement by healthy firms (financed by the accumulated savings of
households), lead to a similar phenomenology.

The role of the bankruptcy threshold Θ, which is the only “proto-monetary” effect in Mark 0, turns out to be crucial
in the model, and leads to the phase diagram shown in Fig. 4. We generically find not one but three “good” phases
of the economy: one is where full employment prevails (FE), the second one is where some residual unemployment is
present (RU), and the third, intermediate one is prone to acute endogenous crises (EC), during which the unemploy-
ment rate shoots up before the economy recovers. Note again that there are no exogeneous productivity shocks in
Mark 0; interestingly, crises (when they occur) are of endogeneous origin and not as a result of sweeping parameters
through a phase transition (as is the case, we argued, of Mark I with a time dependent interest rate) but purely as a
result of the own dynamics of the system. The existence of endogenous crises driven by feedback loops in such simple
settings is quite interesting from a general standpoint (see also [29, 31]), and reinforces the idea that many economic
and financial crises may not require large exogenous shocks (see [5, 6, 26, 47, 50–54] for related discussions). We
have shown that the endogenous crises can be defanged (in the model) if the household sector does not carry the full
burden of firms bankruptcies and/or when the profits of firms is efficiently re-injected in the economy (see e.g. Fig.
6).

We have then allowed firms to vary the wages of their employees according to some plausible rules of thumb (wages
in Mark I and Mark 0 are fixed); this leads to inflation or deflation but leaves the above picture essentially unchanged
(see Fig. 7). Several other extensions are of obvious interest, and we plan to study them in the near future in the
same stylized way as above. The most obvious ones is to understand how a central bank that prints money and sets
exogenously the interest rate can control the unemployment rate and the inflation rate in the vicinity of an unstable
point, as we mentioned just above [43]. Other interesting topics are: modeling research and innovation, allowing firms
to produce different types of goods, and introducing a financial sector and a housing market [55].

Beyond the generic phase diagram discussed in the whole paper, we found another notable, robust feature: the low
unemployment phase of all the ABMs we considered are characterized by endogenous oscillations that do not vanish
as the system size becomes large, with a period corresponding, in real time, to ∼ 5− 10 years [31]. It is tempting to
interpret these oscillations as real and corresponding to the “business cycle”, as they arise from a very plausible loop
between prices, demand and savings. These oscillations actually also appear in highly simplified models, where both
the household and the firm sectors are represented by aggregate variables [37, 56], as well as in network models [6].

Building upon this last remark, a very important question, it seems to us, is how much can be understood of the
phenomenology of ABMs using “mean-field” approaches [58, 59], i.e. dynamical equations for aggregate variables of the
type considered, for example, in [37, 38]? A preliminary analysis reveals that the dynamical equations corresponding
to Mark 0 or Mark I already lead to an amazingly complex phase-diagram [56]. Are these mean-field descriptions
quantitatively accurate? When do we really need agents and when is an aggregate description sufficient? The answer
to this question is quite important, since it would allow one to devise faithful “hybrid” ABMs, where whole sectors
of the economy would be effectively described in terms of these aggregate variables, only keeping agents where they
are most needed.

Another nagging question concerns the calibration of macroeconomic ABMs. It seems to us that before attempting
any kind of quantitative calibration, exploring and making a catalogue of the different possible qualitative “phases” of
the model is mandatory. Is the model qualitatively plausible or is the dynamics clearly unrealistic? In what “phase”
is the true economy likely to be? On this point, one of the surprise of the present study is the appearance of very
long time scales. For example, even in the case of perfectly stable economy with wage update rule (18) and all γ
parameters equal to 10% (a rather large value), the equilibrium state of the economy (starting from an arbitrary
initial condition) is only reached after ≈ 200 time steps. If one thinks that the elementary time scale in these models
is of the order of three months, this means that the physical equilibration time of the economy is 20-50 years, or even
much longer, see e.g. Figs. 4 & 7. But there is no reason to believe that on these long periods all the micro-rules
and their associated parameters are stable in time. Therefore, studying the stationary state of macroeconomic ABMs
might be completely irrelevant to understand the real economy. The economy could be in a perpetual transient state
(aka “non ergodic”), unless one is able to endogenise the time evolution of all the relevant parameters governing its
evolution (see the conclusion of [13] for a related discussion).

If this is the case, is there any use in studying ABMs at all? We strongly believe that ABMs would still be genuinely
helpful. ABMs allow us to experiment and scan the universe of possible outcomes – not missing important scenarios
is already very good macroeconomics. Human imagination turns out to be very limited, and that is the reason we
like models and equations, that help us guessing what can happen, especially in the presence of collective effects that
are often very counterintuitive. In this respect, ABMs provide extremely valuable tools for generating scenarios, that
can be used to test the effect of policy decisions (see e.g. the pleas by Buchanan [21], and Farmer & Foley [22]). In
order to become more quantitative, we think that ABMs will have to be calibrated at the micro-level, using detailed
behavioural experiments and field studies to fine tune all the micro-rules needed to build the economy from bottom
up (see [55, 57] for work in this direction.) Calibrating on historical data the emergent macro-dynamics of ABMs
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will most probably fail, because of the dimensionality curse and of the Lucas critique (i.e. the feedback between the
trajectory of the economy and policy decisions that dynamically change the parameters of the model).
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Appendix A: Pseudo-code for Mark I+

We describe here the pseudo-code of our version of Mark I, which we call Mark I+. To keep the length reasonable,
a few irrelevant details will be omitted, but the information given here is enough to reproduce the results presented in
the paper. In particular, we describe here only the part of the code that is needed to generate the dynamical evolution
of the model, and we omit the part that is needed to generate the data output. The source code is available on the
site of the CRISIS project (www.crisis-economics.eu).

1. Notations

We describe the algorithm in an object-oriented fashion, where the different agents are described as representatives
of a few classes. We use an object oriented syntax. This syntax should be very intuitive and easy to follow. However,
it is useful to clarify a few notational conventions:

• The declaration of a variable a (for example of integer type int) will be written in C syntax as int a.

• If a is an object of some class, then a.f(x) means that we are calling the method (function) f(x) of object a
with argument x.

• For simplicity, in the for loops we will use the C syntax where, for example, for(t← 1; t ≤ T ; t← t+ 1) means
that t is set to one before the loop starts, t is increased by 1 at the end of each iteration, and the loop continues
if the condition t ≤ T is true.

• Instead of arrays we will use vectors of objects, and we will follow the notation of C++21. For example,
vector<int> will denote an ordered set (array) of integers. Moreover:

– A vector of size N will be declared as vector<int> A(N), and by default the declaration vector<int>
A means that the set A is initiated as empty.

– |A| will denote the size of the set A

– The notation A[i] will denote the i-th element of the set (with i = 0, · · · , |A| − 1).

– The notation A ← a will denote the operation of adding the element a to the set A, therefore increasing
its size by one (this correspond to the “push back” operation in C++).

– The notation a ←R A will denote the extraction of a random element from A, which is set equal to a.
Note that the element is not removed from A so the size of A remains constant. The notation A′ ←R,M A
denotes extraction at random of M different elements from the set A, that constitute the set A′.

– The notation A 6→ a will denote the removal of element a from set A, therefore reducing the size of A by
one.

– To denote an ordered iteration over an ordered set A, we will use a loop for(a ∈ A).

– We define a function average(a.f(), a ∈ A) that returns the average of the |A| numbers a[i].f(), i =
0, · · · , |A| − 1

• For logical operators, we use the C++ convention22 which should be quite transparent.

2. Classes

The classes are:

• Firm

• Household

• Bank

21 See for example http://www.cplusplus.com/reference/vector/vector/
22 http://en.wikipedia.org/wiki/Operators_in_C_and_C++#Logical_operators
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The role of the bank is very limited at this level and this class is mainly included for the purpose of future extension.
One household has a special role as it is the “owner” of the firms, which will pay dividends to this one household. The
main loop is described in Algorithm 1 below. The implementation of the firm class is in Algorithm 3, the household
class in Algorithm 6 and the bank class in Algorithm 7.

Algorithm 1 Main loop of Mark I+

Require: NF Number of firms; NH Number of households; ρ0 baseline interest rate; T total evolution time;

. Initialisation
vector<household> H(NH)
household O . The owner of all firms
vector<firm> F (NF)
bank B

p← 1 . Average price
for f ∈ F do

f .set owner(O)
end for
B.set ρ(ρ0)

. Main loop
for (t← 1; t ≤ T ; t← t+ 1) do

vector<firm> E,D
for f ∈ F do . Firm decide new strategy on prices and production

f .set new strategy(p)
f .get loans(B)
f .compute interests()
f .define labor demand()
if f .n vacancies() > 0 then D ← f . Firms in D demand workforce
else if f .n vacancies() < 0 then E ← f . Firms in E have an excess of workforce
end if

end for

for f ∈ E do . Job market and production
while f .n vacancies() < 0 do f .fire random worker() . Firms with excess workforce fire random workers
end while

end for
vector<household> U
for h ∈ H do

if !h.working() then U ← h . U is the set of unemployed households
end if

end for
while |U | > 0 && |D| > 0 do . Random match of unemployed households and demanding firms

h←R U
f ←R D
f .hire(h)
U 6→ h
if f .n vacancies()==0 then D 6→ f
end if

end while
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Algorithm 2 Main loop of Mark I+ (continued)

for f ∈ F do . Firms produce and pay workers
f .produce()
f .pay workers()
if f .age()<100 then f.markup rule() . Young firms apply a markup rule to avoid bankrupt
end if

end for
. Goods market

H ←random permutation(H)
for h ∈ H do h.consume(F ) . Consume in random order
end for

. Accounting and bankrupts
bad debts ← 0
vector<firm> L
for f ∈ F do

f .accounting(B)
if f .liquidity() < 0 then . Firms with negative liquidity go bankrupt

bad debts ← bad debts + f .liquidity() . Note: bad debts is negative!
L← f . L is the sent of bankrupt firms

else L← f . L is the set of healthy firms
end if

end for
if |L| == 0 then break . If all firms are bankrupt, exit the program
end if
pb ← average(f [i].price(), f ∈ L)

Y
T ← average(f [i].target production(), f ∈ L)

Y ← average (f [i].production(), f ∈ L)

for f ∈ L do f .reinit(pb, Y
T
, Y ) . Bankrupt firms are reinitialized with the average parameters of healthy firms

end for
total liquidity ←

∑NF
i=0 f [i].equity() +

∑NH
i=0 h[i].wealth()

for f ∈ F do f .get money(bad debts * f [i].equity() / total liquidity)
end for
for h ∈ H do h.get money(bad debts * h[i].wealth() / total liquidity)
end for . Bad debt is spread over firms and households proportionally to their wealth

p←
∑|F |−1
i=0 f [i].price() f [i].sales()∑|F |−1

i=0 f [i].sales()
. Update average price

end for
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Algorithm 3 The class firm

Parameters : W = 1, α = 1, γp = 0.1, γy = 0.1, µ = 0, δ = 0.2, τ = 0.05
Dynamic variables : vector<household> E; household O; p, Y, Y T , D,L, v,DT , t
Dynamic variables (auxiliary): Ld, ρ, I

. Initialization methods
function init

E ←empty . The set E is the list of employees and is initialized as empty
p← 1 . Price
Y ← 1 . Production
Y T ← 1 . Target production
D ← 1 . Demand
L ← 50 . Liquidity
v ← 0 . Number of vacancies
DT ← 0 . Total debt
t← 0 . Internal clock

end function

function set owner(household Õ)

O ← Õ
end function

function reinit(p̃, Ỹ T , Ỹ )
p← p̃

Y ← Ỹ
Y T ← Ỹ T

D ← 0
L ← min{O.wealth(), Y/α} . The owner injects money to restart the bankrupt firm
O.get money(-L)
v ← 0
DT ← 0
t← 0
v ← 0
for h ∈ E do

fire(h)
end for

end function
. Output methods

function price
return p

end function

function production
return Y

end function

function stock
return Y −D

end function

function sales
return D

end function

function target production
return Y T

end function

function equity
return L −DT

end function

function liquidity
return L

end function

function n vacancies
return v

end function
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Algorithm 4 The class firm (continued)

function age
return t

end function
. Accounting methods

function get money(m̃)
L ← L+ m̃

end function

function get loans(bank B̃)
Ln ←WLd − L . Financial need
if Ln > 0 then

`← (DT + Ln)/(L+ 0.001) . This is the leverage

ρoffer ← B̃.compute offer rate(`) . New offered interest rate
Dc ← Ln F (ρoffer) . The function F (ρ) can be whatever decreasing function of ρ, see Eq. (4)
if Dc > 0 then

ρ← ρoffer . If new credit is contracted, the interest rate is updated
DT ← DT +Dc . Total debt is increased by current debt Dc
L ← L+Dc
B̃.get money(-Dc)

end if
end if

end function

function compute interests
I ← ρDT . Interests to be paid in this round

end function

function pay workers
for h ∈ E do

h.get money(W )
end for
L ← L−W |E|

end function

function markup rule
if Y > 0 then

pmarkup ← (1 + µ)(W |E|+ I)/Y
p← max{p, pmarkup}

end if
end function

function accounting(bank B̃)
L ← L− I − τDT . Firm pays interests and repays a fraction τ of its debt

B̃.get money(I + τDT )
DT ← (1− τ)DT
P ← pD −W |E| − I . Profit
if P > 0 then

O.get money(δP) . Firm pays dividends to the owner
L ← L− δP

end if
end function

function sell(q̃)
D ← D + q̃
L ← L+ pq̃

end function
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Algorithm 5 The class firm (continued)

. Production and job market methods
function set new strategy(p̃)

t← t+ 1
if Y = D && p ≥ p̃ then Y T ← Y (1 + γy random) . This is Eq. (1) in the main text
else if Y = D && p < p̃ then p← p(1 + γp random)
else if Y > D && p ≥ p̃ then p← p(1− γp random)
else if Y > D && p < p̃ then Y T ← Y (1− γy random)
end if
Y T ← max{Y T , α}
Ld ←ceil(Y T /α)

end function

function define labor demand
Ld ← min{Ld, floor(L/W )}
Ld ← max{Ld, 0}
v ← Ld − |E|

end function

function produce
Y = min{Y T , α|E|}
D = 0 . The demand is reset to zero at each production cycle

end function

function hire(household h)
E ← h
h.get job(W )
v ← v − 1

end function

function fire(household h)
h.lose job()
E 6→ h
v ← v + 1

end function

function fire random worker
if |E| > 0 then

h←R E
fire(h)

end if
end function
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Algorithm 6 The class household

Parameters : M = 3, c = 0.8
Dynamic variables : S, W

. Initialization methods
function init

S ← 0 . Savings
W ← 0 . Salary

end function
. Accounting methods

function get money(m̃)
S ← S + m̃

end function
. Output methods

function wealth
return S

end function

function working
if W > 0 then return True
else return False
end if

end function
. Job and goods market methods

function get job(W̃ )

W ← W̃
end function

function lose job
W ← 0

end function

function consume( vector<firm> F̃ )
budget ← cS
if budget > 0 then

Fc ←R,M F̃ . Extract M random firms from F̃ and put them in the set Fc
Fc ← sort(f ∈ Fc, f .price()) . Order the set Fc according to firms’ prices
spent ← 0
for (i← 0; i < |Fc| && spent < budget; i← i+ 1) do

s← f [i].stock() . s is the stock available from this firm
if s > 0 then

q ← (budget - spent)/f [i].price() . Maximum possible consumption from this firm
if s > q then

f [i].sell(q)
spent ← budget . The household has finished the budget, the loop ends

else
f [i].sell(s)
spent ← spent + s f [i].price()

end if
end if

end for
end if
S ← S−spent

end function
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Algorithm 7 The class bank

Dynamic variables : E, ρb

function init
E ← 0 . Bank liquidity
ρb ← 0 . Baseline interest rate

end function

function set ρ(ρ̃)
ρb ← ρ̃

end function

function compute offer rate(˜̀)
return ρbG(˜̀) . We chose G(`) = 1 + log(1 + `)

end function

function get money(m̃)
E ← E + m̃

end function
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Appendix B: Pseudo-code of Mark 0

We present here the pseudo-code for the Mark 0 model discussed in Sec. III A and in Sec. IV. The source code is
available on the site of the CRISIS project (www.crisis-economics.eu).

Algorithm 8 The basic Mark 0

Require: NF Number of firms; µ, c, β, γp, η
0
+, η

0
−, δ,Θ, ϕ, f ; T total evolution time;

. Initialization
for (i← 0; i < NF; i← i+ 1) do

W [i]← 1 . Salaries are always fixed to one
p[i]← 1 + 0.2(random− 0.5)
Y [i]← µ[1 + 0.2(random− 0.5)]/2 . Initial employment is 0.5
E [i]←W [i]Y [i] 2 random
a[i]← 1

end for

S ← NF −
∑
i E [i]

. Main loop
for (t← 1; t ≤ T ; t← t+ 1) do

u← 1− 1
µNF

∑
i Y [i]

ε← 1− u
p←

∑
i p[i]Y [i]∑
i Y [i]

w ←
∑
iW [i]Y [i]∑
i Y [i]

ũ[i]← exp(βW [i]/w)∑
i a[i] exp(βW [i]/w)

NFu

. Firms update prices, productions and wages
for (i← 0; i < NF; i← i+ 1) do

if a[i] == 1 then

if Y [i] < D[i] then . Wage update
if P[i] > 0 then

W [i]←W [i][1 + γwε random]
W [i]← min {W [i], P [i] min [D[i], Y [i]]/Y [i]}

end if . This is Eq. (11) in the main text
Y [i]← Y [i] + min{η+(D[i]− Y [i]), µũ[i]}
if p[i] < p then p[i]← p[i](1 + γp random)
end if

else if Y [i] > D[i] then
if P[i] < 0 then

W [i]←W [i][1− γwu random]
end if
Y [i]← max{0, Y [i]− η−(D[i]− Y [i])}
if p[i] < p then p[i]← p[i](1− γp random)
end if

end if
end if

end for

u← 1− 1
µNF

∑
i Y [i] . Update u and p

p←
∑
i p[i]Y [i]∑
i Y [i]
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Algorithm 9 The basic Mark0 (continued)

. Households decide the demand
C ← c(max{S, 0}+

∑
iW [i]Y [i])

for (i← 0; i < NF; i← i+ 1) do

D[i]← Ca[i] exp(−βp[i]/p)
p[i]

∑
i a[i] exp(−βp[i]/p) . Inactive firms have no demand

end for
. Accounting

for (i← 0; i < NF; i← i+ 1) do
if a[i] == 1 then
P[i]← p[i] min{Y [i], D[i]} −W [i]Y [i]
S ← S − P[i]
E [i]← E [i] + P[i]
if P[i] > 0 && E [i] > 0 then . Pay dividends

S ← S + δP[i]
E [i]← E [i]− δP[i]

end if
if E [i] > ΘW [i]Y [i] then . Set of healthy firms
H ← i

end if
end if

end for
. Defaults

deficit = 0
for (i← 0; i < NF; i← i+ 1) do

if a[i] == 1 && E [i] < −ΘY [i]W [i] then
j ←R H
if random < 1− f && E [j] > −E [i] then . Bailed out
E [j]← E [j] + E [i]
E [i]← 0
p[i]← p[j]
W [i]←W [j]

else . Bankrupted
deficit ← deficit −E [i]
a[i]← 0
Y [i]← 0
E [i]← 0

end if
end if

end for
. Revivals

E+ ← 0
for (i← 0; i < NF; i← i+ 1) do

if a[i] == 0 && random < ϕ then . Reactivate firm
a[i]← 1
p[i]← p
Y [i]← µu random
E [i]←W [i]Y [i]
deficit ← deficit +E [i]

end if
if a[i] == 1 && E [i] > 0 then . Firms total savings
E+ ← E+ + E [i]

end if
end for

. Debt
if deficit > S then . Households cannot be indebted

deficit ← deficit −S
S ← 0
for (i← 0; i < NF; i← i+ 1) do

if a[i] == 1 && E [i] > 0 then
E [i]← E [i]− E [i]/E+ deficit

end if
end for

else
S ← S− deficit

end if

end for
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Appendix C: Perturbative solution of the schematic model

1. Stationary distribution at first order in γp

From Eq. (25), the stationary distribution Pst(λ) satisfies

Pst(λ) =

∫ 1

0

dξ

∫ ∞
0

dλ′Pst(λ
′)δ
(
λ− λ′ + ξ +

γp
2
ξ2
)

+

∫ 1

0

dξ

∫ 0

−∞
dλ′Pst(λ

′)δ
(
λ− λ′ − ξ +

γp
2
ξ2
)
. (C1)

We recall that the dynamics of λi(t) is{
λi(t) < 0 λi(t+ 1) = λi(t) + ξi(t)− 1

2γpξi(t)
2

λi(t) > 0 λi(t+ 1) = λi(t)− ξi(t)− 1
2γpξi(t)

2
(C2)

with ξi(t) a random variable in [0, 1]. From these equations it is clear that positive and negative λi are pushed towards
the origin, and after some transient time one necessarily has

−1− 1

2
γp ≤ λi(t) ≤ 1− 1

2
γp . (C3)

We first set γp = 0 and therefore restrict λ ∈ [−1, 1] in Eq. (C1). We obtain

Pst(λ) =

∫ 1−max(λ,0)

max(0,−λ)

dξPst(λ+ ξ) +

∫ 1−max(−λ,0)

max(0,λ)

dξPst(λ− ξ) = L0Pst , (C4)

where we call L0 the linear operator that appears on the right hand side. When one computes the action of L0 on
the functions gn(λ) = sign(λ)λn and hn(λ) = λn, one finds, for λ > 0:

(n+ 1)L0gn(λ) =

{
1− (−1)n −

∑n−1
k=0 D

k
n(−1)kλn−k λ > 0

1− (−1)n +
∑n−1
k=0 D

k
nλ

n−k λ < 0
(C5)

with Ckn the binomial coefficients and Dk
n =

∑n
j=k C

k
j , and

(n+ 1)L0hn(λ) =

{
1− λn+1 − (λ− 1)n+1 = 1 + (−1)n − 2λn+1 −

∑n
k=1 C

k
n+1(−1)kλn+1−k λ > 0 ,

(1 + λ)n+1 + λn+1 + (−1)n = 1 + (−1)n + 2λn+1 +
∑n
k=1 C

k
n+1λ

n+1−k λ < 0 .
(C6)

Let us focus on small values of n, useful in the following:

n = 0 → L0g0 = 0 , L0h0 = 2(h0 − g1) ,

n = 1 → L0g1 = 1− g1 , L0h1 = −g2 + h1 , (C7)

n = 2 → L0g2 = h1 − g2 , L0h2 =
2

3
(h0 − g3) + h2 − g1 .

In particular, one has:

L0(h0 − g1) = 2(h0 − g1)− 1 + g1 = (h0 − g1). (C8)

This shows that P0(λ) = h0(λ)− g1(λ) = 1− |λ| (called the “tent”) is an eigenvector of L0 with eigenvalue 1, i.e. this
is the stationary state for γp = 0.

This basic solution allows us to obtain perturbatevely the stationary solution for small γp. Recalling that the
support of Pst(λ) is given by Eq. (C3), Eq. (C1) can be written as

Pst(λ) =

∫ a+

a−

dξPst(λ+ ξ +
1

2
γpξ

2) +

∫ b+

b−

dξPst(λ− ξ +
1

2
γpξ

2) = LγpPst , (C9)

with:

a− = max
{

0,−λ(1 +
γp
2
λ)
}
, a+ = min

{
1, 1− λ− γp

2
(1 + (1− λ)2)

}
,

b− = max
{

0, λ(1 +
γp
2
λ)
}
, b+ = min

{
1, 1 + λ+

γp
2

(1 + (1 + λ)2)
}
,

(C10)
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these integration bounds coming from the combination of the support in Eq. (C3) and the integration bounds on λ′

in Eq. (C1). Writing Pst = P0 + γpP1 where P0 is the tent solution, and Lγp = L0 + γpL1, we obtain at first order in
γp an equation of the form:

(1− L0)P1 = L1P0 = S . (C11)

The source term S can be most easily computed by computing LγpP0 and expanding the result at first order in γp.

We find S = λ/2 − sign(λ)λ2 = 1
2h1 − g2. This is nice because one can look for a solution involving only n = 1 and

n = 2 that closes the equation:

P1 = αh1 + βg2 (C12)

Using: L0g2 = h1 − g2 = L0h1, one finds:

(1− L0)P1 = αh1 + βg2 − (α+ β)(h1 − g2) = −βh1 + (α+ 2β)g2 = S =
1

2
h1 − g2 , (C13)

so the result for the coefficients is

β = −1

2
, α = 0 . (C14)

The final solution for the stationary state to first order in γ is:

P = 1− |λ| − 1

2
γp sign(λ)λ2. (C15)

Note that P is still normalized, as it should and goes to zero (to first order in γp) at the boundary of the support
interval given in Eq. (C3).

2. Perturbative analysis of the oscillations

In order to understand oscillations, we start from Eqs. (35) and in the following we assume that 0 < C < 1. We

introduce E(t) = α(t)−Cλ(t)
2(1−C) , Λ(t) = min{λ(t), E(t)} and Ω(t) = max{λ(t), E(t)}, and we write Eq. (35) equivalently

as

αi(t+ 1) = αi(t)−min{λi(t), Cλi(t) +
1

2
(α(t)− Cλ(t))}

If λi(t) < Λ(t) ⇒ λi(t+ 1) = λi(t) + ξi(t)

If Ω(t) < λi(t) < Λ(t) ⇒ λi(t+ 1) = λi(t)

If λi(t) > Ω(t) ⇒ λi(t+ 1) = λi(t)− ξi(t)

(C16)

The master equation for the distribution of λ reads:

Pt+1(λ′) =

∫ Λ(t)

−∞
dλ

∫ 1

0

dξ Pt(λ) δ(λ′ − λ− ξ) +

∫ Ω(t)

Λ(t)

dλPt(λ)δ(λ− λ′) +

∫ ∞
Ω(t)

dλ

∫ 1

0

dξ Pt(λ) δ(λ′ − λ+ ξ)

=

∫ Λ(t)

−∞
dλ

∫ 1

0

dξ Pt(λ) δ(λ′ − λ− ξ) + θ(Λ(t) ≤ λ′ ≤ Ω(t))Pt(λ
′) +

∫ ∞
Ω(t)

dλ

∫ 1

0

dξ Pt(λ) δ(λ′ − λ+ ξ) .

(C17)

while the evolution equation for α is

α(t+ 1) = α(t)−
∫ ∞
−∞

dλPt(λ) min{λ,Cλ+
1

2
(α(t)− Cλ(t))} . (C18)
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a. Stationary state

Numerically, we observe that Λ(t) ∼ Ω(t) and their variations are much smaller than the width of the distributions
of λ and α. In the limit where

Λ(t) = Ω(t) = λ(t) = E(t) =
α(t)− Cλ(t)

2(1− C)
(C19)

we obtain

Pt+1(λ′) =

∫ Λ(t)

−∞
dλ

∫ 1

0

dξ Pt(λ) δ(λ′ − λ− ξ) +

∫ ∞
Λ(t)

dλ

∫ 1

0

dξ Pt(λ) δ(λ′ − λ+ ξ) , (C20)

whose stationary solution is P (λ) = P0[λ − λ
∗
] where P0(x) = (1 − |x|)θ(1 − |x|) is the tent function, with λ

∗

undetermined at this stage. Plugging this result in Eq. (C18), we have

α(t+ 1) = α(t)− λ∗ +
1− C

6
. (C21)

The fixed point is therefore λ
∗

= 1−C
6 and from the condition (C19) we get α∗ = (2− C)λ

∗
= (2− C)(1− C)/6.

b. Oscillation around the stationary state – a simple approximation

In order to study the small oscillations we can make a very simple approximation, namely that at each time t we
have Pt(λ) = P0[λ − λ̄(t)]. If we inject this approximation in Eq. (C18) we get, provided λ̄(t) − λ̄∗ is not too large,
that

ᾱ(t+ 1) = ᾱ(t)−
∫ ∞
−∞

dλmin{λ,Cλ+ (1− C)E(t)}P0[λ− λ̄(t)]

= ᾱ(t)− λ̄(t)− 1− C
6

[
−1 + 3A− 3A2 +A3 sign(A)

]
A=E(t)−λ̄(t)

(C22)

Next, injecting this approximation in Eq. (C17) we get

λ̄(t+ 1) = λ̄(t) +
1

2

∫ Λ(t)

−∞
dλP0[λ− λ̄(t)]− 1

2

∫ ∞
Ω(t)

dλP0[λ− λ̄(t)]∫ ∞
Ω(t)−λ̄(t)

dxT [x]

=
1

2

[
Λ(t) + Ω(t)− 1

2
[Λ(t)− λ̄(t)]2sgn[Λ(t)− λ̄(t)]− 1

2
[Ω(t)− λ̄(t)]2sgn[Ω(t)− λ̄(t)]

] (C23)

We therefore get a closed system of two equations for λ̄(t) and ᾱ(t). For small C, this system of equations converges
quickly to the fixed point. However, for C sufficiently close to 1 (C ∼ 0.94) it has a limit cycle of period 2, followed
by an exponential divergence.

c. Oscillation around the stationary state – perturbative computation

Another strategy to characterize the oscillations is to look again for a perturbed solution around the stationary
state, with: λ(t) = 1−C

6 + δλ1(t) and α(t) = (2−C)λ+ 2(1−C)δλ2(t) +Cδλ1(t). The distribution of λi at time t is

now Pt(λ) = P0(λ − 1−C
6 ) + δPt(λ − 1−C

6 ). The shifted variable λ − 1−C
6 will be denoted x. The aim is to write an

evolution for δP t+1 after one time step. The L0 operator is the same as before, as well as the set of functions gn and
hn. We also introduce ∆(x) as a δ-function slightly spread out, but of unit area (its precise width is irrelevant if it is
small enough).

To lowest order, one has:

L0∆ ≈ 1

2
h0. (C24)
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We will also need, as found above:

L0h0 = 2(h0 − g1), L0g0 = 0, L0g1 = h0 − g1. (C25)

We now introduce d = |δλ2 − δλ1| and s = δλ2 + δλ1. Assuming d, s� 1, one finds, to first order:

δP t+1 = L0δP t −
1

2
dth0 +

1

2
stg0 + dt∆ (C26)

Note that the integral [δP ] =
∫ 1

−1
dxδP (x) is zero and conserved in time, as it should be (one has [h0] = 2, [g0] = 0

and [∆] = 1).
The idea now is to expand δP in terms of the h, g functions. It turns out that only three of them are needed, plus

the ∆ contribution. Indeed, assume:

δP t = At(h0 − 2∆) +Btg0 + Ct(g1 −
1

2
h0) (C27)

Then, using the dynamical equation and the algebra above, one finds:

L0δP t = At(2(h0 − g1)− h0) = −2At(g1 −
1

2
h0) (C28)

Hence, the evolution is closed on itself, with the following evolution rules:

At+1 = −1

2
dt, Bt+1 =

1

2
st, Ct+1 = −2At. (C29)

Note that At −Bt = − 1
2 (dt−1 + st−1) = −max(δλ1t−1, δλ2t−1) = −Mt−1.

Now, by definition λt = 1−C
6 +

∫ 1

−1
dxxδP t, but since h0 and g1 are even, the only contribution comes from the g0

component. Therefore:

δλ1t = Bt

∫ 1

−1

dxxg0(x) = Bt. (C30)

This leads to a first evolution equation:

δλ1t+1 =
1

2
st =

1

2
(δλ1t + δλ2t). (C31)

The second equation comes from the evolution of the αi’s. From:

α(t+ 1) = α(t)− Cδλ1(t)− 1− C
2

δλ2(t)− (1− C)

∫ 0

−1

dxxδP t(x), (C32)

we finally find:

δλ2t+1 =
3

4
δλ2t −

1

4
Mt−1 +

7

24
dt−2 −

C

4(1− C)
(δλ1t + δλ2t). (C33)

The coupled set of iterations for δλ1t and δλ2t, Eqs. (C31) and (C33), lead to damped oscillations for C < C∗∗

and sustained oscillations for C > C∗∗, with C∗∗ ≈ 0.91. The numerical value of C∗∗ however does not coincide with
that of C∗ ≈ 0.45, obtained from the direct simulation of Eqs. (35). This might be due to neglecting higher order
corrections, which appear to be numerically large: the oscillations generated by Eqs. (35) are of amplitude ∼ 0.1 at
the onset, suggesting a sub-critical bifurcation. For small C, on the other hand, the oscillation amplitude is small and
the above equations appear to be quantitatively correct, validating the above calculations.
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